Skip to main content
×
Home

Martensitic transformation from β to α′ and α″ phases in Ti–V alloys: A first-principles study

  • Wei Mei (a1), Jian Sun (a1) and Yufeng Wen (a2)
Abstract
Abstract

The ground state properties of the α′ and α″ martensitic phases and energetic pathways of the β → α′/α″ martensitic transformations in Ti–(0–30 at.%)V alloys were investigated by first-principles method in combination with virtual crystal approximation. The results show that lattice parameters with c/a of the α′ phase and lattice parameters with b/a, c/a of the α″ phase are significantly sensitive to composition, and the atomic shuffle y of the α″ phase decreases from that of the α′ phase toward that of the β phase with increasing V content in Ti–V alloys. The compositional α′/α″ phase boundary is about 10 at.% V, from the viewpoints of energetics and mechanical stability of these phases. The principal lattice strains of the β → α′ transformation are insensitive to the V content, while those of the β → α″ transformation change significantly with increasing V content. The volume variation for β → α′ increases, whereas that for β → α″ decreases with increasing V content in Ti–V alloys. The energetic pathway results show that the relative stability of the α′ and α″ phases decrease with increasing V content and temperature and that there is no energy barriers during the β → α′/α″ martensitic transformations at temperatures from 0 to 400 K.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: jsun@sjtu.edu.cn
Footnotes
Hide All

Contributing Editor: Susan B. Sinnott

Footnotes
References
Hide All
1. Saito T., Furuta T., Hwang J.H., Kuramoto S., Nishino K., Suzuki N., Chen R., Yamada A., Ito K., Seno Y., Nonaka T., Ikehata H., Nagasako N., Iwamoto C., Ikuhara Y., and Sakuma T.: Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464467 (2003).
2. Abdel-Hady M., Hinoshita K., and Morinaga M.: General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr. Mater. 55, 477480 (2006).
3. Kolli R.P., Joost W.J., and Ankem S.: Phase stability and stress-induced transformations in beta titanium alloys. JOM 67, 8 (2015).
4. Matsumoto H., Watanabe S., Masahashi N., and Hanada S.: Composition dependence of Young’s modulus in Ti–V, Ti–Nb, and Ti–V–Sn alloys. Metall. Mater. Trans. A 37, 32393249 (2006).
5. Kim H.Y., Ikehara Y., Kim J.I., Hosoda H., and Miyazaki S.: Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater. 54, 24192429 (2006).
6. Dobromyslov A.V. and Elkin V.A.: The orthorhombic α″-phase in binary titanium-base alloys with d-metals of V–VIII groups. Mater. Sci. Eng., A 438–440, 324326 (2006).
7. Kim H.Y. and Miyazaki S.: Martensitic transformation and superelastic properties of Ti–Nb base alloys. Mater. Trans. 56, 625634 (2015).
8. Burgers W.G.: On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1, 561586 (1934).
9. Pathak A., Banumathy S., Sankarasubramanian R., and Singh A.K.: Orthorhombic martensitic phase in Ti–Nb alloys: A first principles study. Comput. Mater. Sci. 83, 222228 (2014).
10. Bönisch M., Calin M., Giebeler L., Helth A., Gebert A., Skrotzki W., and Eckert J.: Composition-dependent magnitude of atomic shuffles in Ti–Nb martensites. J. Appl. Crystallogr. 47, 13741379 (2014).
11. Bhattacharya K.: Self-accommodation in martensite. Arch. Ration. Mech. Anal. 120, 201244 (1992).
12. Chai Y.W., Kim H.Y., Hosoda H., and Miyazaki S.: Self-accommodation in Ti–Nb shape memory alloys. Acta Mater. 57, 40544064 (2009).
13. Inamura T., Kim J.I., Kim H.Y., Hosoda H., Wakashima K., and Miyazaki S.: Composition dependent crystallography of α″-martensite in Ti–Nb-based β-titanium alloy. Philos. Mag. 87, 33253350 (2007).
14. Leibovitch C., Rabinkin A., and Talianker M.: Phase transformations in metastable Ti–V alloys induced by high pressure treatment. Metall. Trans. A 12, 15131519 (1981).
15. Ming L.C., Manghnani M.H., and Katahara K.W.: Phase transformations in the Ti–V system under high pressure up to 25 GPa. Acta Metall. 29, 479485 (1981).
16. Collings E.W.: Magnetic studies of omega-phase precipitation and aging in titanium–vanadium alloys. J. Less-Common Met. 39, 6390 (1975).
17. Hohenberg P. and Kohn W.: Inhomogeneous electron gas. Phys. Rev. 136, B864B871 (1964).
18. Kohn W. and Sham L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133A1138 (1965).
19. Vanderbilt D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 78927895 (1990).
20. Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.J., Refson K., and Payne M.C.: First principles methods using CASTEP. Z. Kristallogr. 220, 567570 (2005).
21. Perdew J.P., Burke K., and Ernzerhof M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996).
22. Pfrommer B.G., Côté M., Louie S.G., and Cohen M.L.: Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131, 233240 (1997).
23. Yu R., Zhu J., and Ye H.Q.: Calculations of single-crystal elastic constants made simple. Comput. Phys. Commun. 181, 671675 (2010).
24. Bellaiche L. and Vanderbilt D.: Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B 61, 78777882 (2000).
25. Söderlind P., Eriksson O., Wills J.M., and Boring A.M.: Theory of elastic constants of cubic transition metals and alloys. Phys. Rev. B 48, 58445851 (1993).
26. Li T., Morris J.W., Nagasako N., Kuramoto S., and Chrzan D.C.: “Ideal” engineering alloys. Phys. Rev. Lett. 98, 105503 (2007).
27. Tegner B.E., Zhu L.G., and Ackland G.J.: Relative strength of phase stabilizers in titanium alloys. Phys. Rev. B 85, 214106214109 (2012).
28. Söderlind P., Landa A., Yang L.H., and Teweldeberhan A.M.: First-principles phase stability in the Ti–V alloy system. J. Alloys Compd. 581, 856859 (2013).
29. Yan J.Y. and Olson G.B.: Computational thermodynamics and kinetics of displacive transformations in titanium-based alloys. J. Alloys Compd. 673, 441454 (2016).
30. Dahmen U.: Orientation relationships in precipitation systems. Acta Metall. 30, 6373 (1982).
31. Hatt B.A. and Rivlin V.G.: Phase transformations in superconducting Ti–Nb alloys. J. Phys. D: Appl. Phys. 1, 11451149 (1968).
32. Fisher E.S. and Renken C.J.: Single-crystal elastic moduli and the hcp → bcc transformation in Ti, Zr, and Hf. Phys. Rev. 135, A482A494 (1964).
33. Wang Y., Curtarolo S., Jiang C., Arroyave R., Wang T., Ceder G., Chen L.Q., and Liu Z.K.: Ab initio lattice stability in comparison with CALPHAD lattice stability. Calphad 28, 7990 (2004).
34. Aurelio G., Guillermet A.F., Cuello G., and Campo J.: Metastable phases in the Ti–V system: Part I. Neutron diffraction study and assessment of structural properties. Metall. Mater. Trans. A 33, 13071317 (2002).
35. Li C-X., Luo H-B., Hu Q-M., Yang R., Yin F-X., Umezawa O., and Vitos L.: Lattice parameters and relative stability of α″ phase in binary titanium alloys from first-principles calculations. Solid State Commun. 159, 7075 (2013).
36. Chakraborty T., Rogal J., and Drautz R.: Martensitic transformation between competing phases in Ti–Ta alloys: A solid-state nudged elastic band study. J. Phys.: Condens. Matter 27, 115401115408 (2015).
37. Mei W. and Sun J.: Energy landscape of displacive phase transition of β to ω in Ti–V alloys. MRS Adv., 2, 14491454 (2017).
38. Bonisch M., Waltz T., Calin M., Skrotzki W., and Eckert J.: Tailoring the Bain strain of martensitic transformations in Ti–Nb alloys by controlling the Nb content. Int. J. Plast. 85, 190202 (2016).
39. Morris J.W.: The Khachaturyan theory of elastic inclusions: Recollections and results. Philos. Mag. 90, 335 (2010).
40. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A 241, 376396 (1957).
41. Hao Y.J., Zhu J., Zhang L., Qu J.Y., and Ren H.S.: First-principles study of high pressure structure phase transition and elastic properties of titanium. Solid State Sci. 12, 14731479 (2010).
42. Simmons G. and Wang H.: Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook, 2nd ed. (The MIT Press, Cambridge, Massachusetts, 1971).
43. Born M. and Huang K.: Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, England, 1954); p. 141.
44. Boettger J.C. and Wallace D.C.: Metastability and dynamics of the shock-induced phase transition in iron. Phys. Rev. B 55, 28402849 (1997).
45. Moruzzi V.L., Janak J.F., and Schwarz K.: Calculated thermal properties of metals. Phys. Rev. B 37, 790799 (1988).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 15
Total number of PDF views: 39 *
Loading metrics...

Abstract views

Total abstract views: 152 *
Loading metrics...

* Views captured on Cambridge Core between 7th August 2017 - 22nd November 2017. This data will be updated every 24 hours.