Skip to main content Accessibility help

Material aspects of wide temperature range amplifier design in SiC bipolar technologies

  • Raheleh Hedayati (a1) and Carl-Mikael Zetterling (a1)


Silicon carbide (SiC) is the main semiconductor alternative for low loss high voltage devices. The wide energy band gap also makes it suitable for extreme environment electronics, including very high temperatures. Operating integrated electronics at 500–600 °C poses several materials challenges. However, once electronics is available for these high temperatures, the added challenge is designing integrated circuits capable of operating in the entire range from room temperature to 500 °C. Circuit designers have to take into account parameter variations of resistors and transistors, and models are needed for several temperatures. A common circuit design technique to manage parameter variations between different transistors, without wide temperature variations, is to use negative feedback in amplifier circuits. In this paper we show that this design technique is also useful for adapting to temperature changes during operation. Two different amplifier designs in SiC are measured and simulated from room temperature up to 500 °C.


Corresponding author

a) Address all correspondence to this author. e-mail:,


Hide All
1. Zetterling, C-M.: Integrated circuits in silicon carbide for high-temperature applications. MRS Bull. 40(5), 431 (2015).
2. Kimoto, T. and Cooper, J.A.: Fundamentals of Silicon Carbide Technology (Wiley, New York, 2014).
3. Cressler, J.D. and Mantooth, H.A., eds.: Extreme Environment Electronics (CRC Press, UK, 2013).
4. Suvanam, S.S., Lanni, L., Malm, B.G., Zetterling, C-M., and Hallén, A.: Effects of 3 MeV protons on 4H-SiC bipolar devices and integrated OR-NOR gate. IEEE Trans. Nucl. Sci., 61, 1772 (2014).
5. Van Brunt, E., Cheng, L., O'Loughlin, M.J., Richmond, J., Pala, V., Palmour, J., Tipton, C.W., and Scozzie, C.: 27 kV, 20 A 4H-SiC n-IGBTs. Mater. Sci. Forum, 821, 847 (2015).
6. Lanni, L., Malm, B.G., Östling, M., and Zetterling, C.M.: ECL-based SiC logic circuits for extreme temperatures. Mater. Sci. Forum 821, 910 (2015).
7. Spry, D.J., Neudeck, P.G., Chen, L., Lukco, D., Chang, C.W., and Beheim, G.M.: Prolonged 500 °C demonstration of 4H-SiC JFET ICs with two-level interconnect. IEEE Electron Device Lett. 37(5), 625 (2016).
8. Young, R.A.R., Clark, D., Cormack, J.D., Murphy, A.E., Smith, D.A., Thompson, R.F., Ramsay, E.P., and Finney, S.: High Temperature Digital and Analogue Integrated Circuits in Silicon Carbide. Mater. Sci. Forum 740, 1065 (2013).
9. Ghandi, R., Chen, C-P., Yin, L., Zhu, X., Yu, L., Arthur, S., Ahmad, F., and Sandvik, P.: Silicon Carbide Integrated Circuits with Stable Operation over a Wide Temperature Range. IEEE Electron Device Lett. 35, 1206 (2014).
10. Okojie, R.S., Lukco, D., Nguyen, V., and Savrun, E.: 4H-SiC piezoresistive pressure sensors at 800 °C with observed sensitivity recovery. IEEE Electron Device Lett. 36(2), 174 (2015).
11. Gaska, R., Gaevski, M., Deng, J., Jain, R., Simin, G., and Shur, M.: Novel AllnN/GaN integrated circuits operating up to 500 °C. European Solid State Device Research Conference (ESSDERC), 142 (2014).
12. Ohta, H., Kaneda, N., Horikiri, F., Narita, Y., Yoshida, T., Mishima, T., and Nakamura, T.: Vertical GaN p–n junction diodes with high breakdown voltages over 4 kV. IEEE Electron Device Lett. 36(11), 1180 (2015).
13. Chu, R., Cao, Y., Chen, M., Li, R., and Zehnder, D.: An experimental demonstration of GaN CMOS technology. IEEE Electron Device Lett. 37(3), 269 (2016).
14. Porter, L.M.: Wide Band Gap Materials and New Developments (Research Signpost, India, 2006); pp. 187208.
15. Kragh-Buetow, K.C., Okojie, R.S., Lukco, D., and Mohney, S.E.: Characterization of tungsten–nickel simultaneous ohmic contacts to p- and n-type 4H-SiC. Semicond. Sci. Technol. 30(10), 105019 (2015).
16. Lanni, L., Malm, B.G., Zetterling, C-M., and Östling, M.: A 4H-SiC bipolar technology for high-temperature integrated circuits. J. Microelectron. Electron. Packag. 10, 155 (2013).
17. Lanni, L., Malm, B.G., Ostling, M., and Zetterling, C-M.: 500 bipolar integrated or/NOR gate in 4H-SiC. IEEE Electron Device Lett. 34(9), 1091 (2013).
18. Hedayati, R., Lanni, L., Rusu, A., and Zetterling, C-M.: Wide temperature range integrated bandgap voltage references in 4H–SiC. IEEE Electron Device Lett. 37(2), 146 (2016).
19. Ohshima, T., Yokoseki, T., Murata, K., Matsuda, T., Mitomo, S., Abe, H., Makino, T., Onoda, S., Hijikata, Y., Tanaka, Y., Kandori, M., Okubo, S., and Yoshie, T.: Radiation response of silicon carbide metal–oxide–semiconductor transistors in high dose region. Jpn. J. Appl. Phys. 55(1S), 01AD01 (2016).
20. Nawaz, M., Zaring, C., Onoda, S., Ohshima, T., and Östling, M.: Radiation hardness assessment of high voltage 4H-SiC BJTs. Device Research Conference, 279 (2009).
21. Gray, P.R., Hurst, P., Meyer, R.G., and Lewis, S.: Analysis and Design of Analog Integrated Circuits (Wiley, New York, 2001).
22. Hedayati, R., Lanni, L., Rodriguez, S., Malm, B.G., Rusu, A., and Zetterling, C-M.: A monolithic, 500 °C operational amplifier in 4H-SiC bipolar technology. IEEE Electron Device Lett. 35(7), 693 (2014).
23. Hedayati, R., Lanni, L., Rusu, A., and Zetterling, C-M.: Wide temperature range integrated amplifier in Bipolar 4H-SiC Technology. Presented at the ESSDERC (2016).
24. Hedayati, R., Lanni, L., Rusu, A., and Zetterling, C-M.: High temperature integrated amplifier in bipolar 4H-SiC. Presented at Spring MRS 2016, Session EP2 (2016).
25. Kargarrazi, S., Lanni, L., and Zetterling, C-M.: A study on positive-feedback configuration of a bipolar SiC high temperature operational amplifier. Solid-State Electron. 116, 33 (2016).
26. Tian, Y., Lanni, L., Rusu, A., and Zetterling, C-M.: Silicon carbide fully differential amplifier characterized up to 500 °C. IEEE Trans. Electron Devices 63(6), 2242 (2016).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed