Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-17T18:51:10.522Z Has data issue: false hasContentIssue false

Materials perspective of polymers for additive manufacturing with selective laser sintering

Published online by Cambridge University Press:  08 July 2014

Manfred Schmid*
Affiliation:
Inspire AG, irpd – Institute for Rapid Product Development, CH-9014 St. Gallen, Switzerland
Antonio Amado
Affiliation:
Inspire AG, irpd – Institute for Rapid Product Development, CH-9014 St. Gallen, Switzerland
Konrad Wegener
Affiliation:
Department of Mechanical and Process Engineering, Swiss Institute of Technology, CH-8093 Zürich, Switzerland
*
a)Address all correspondence to this author. e-mail: manfred.schmid@inspire.ethz.ch
Get access

Abstract

The fundamental factors of polymer powders, their importance for successful selective laser sintering (SLS) processing, and the outstanding position of polyamide 12 (PA12) powders in this connection are presented. Considering key factors, the combination of intrinsic and extrinsic properties necessary to generate a powder likely for SLS application is emphasized. Only a specific combination of indicated points leads to success. This is one reason for fewer materials commercially available to date for SLS application. PA12 and some dry blends based on PA12 are today the materials that are used to generate almost all commercial SLS parts. The specific performance of particular PA12 for SLS processing is unmatched from other polymers so far. Reasons are the precise molecular control of SLS polymers for thermal behavior (enlargement of sintering window) and the open chain structure. This is for generation of sufficient mechanical properties and to induce interlayer bonding of successively sintered layers to reduce anisotropic parts.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gibson, I., Rosen, D.W., and Stucker, B.: Additive Manufacturing Technologies - Rapid Prototyping to Direct Digital Manufacturing, 1st ed. (Springer, New York, Berlin, 2010).CrossRefGoogle Scholar
Hopkinson, N., Hague, R.J.M., and Dickens, P.M.: Rapid Manufacturing – An Industrial Revolution for the Digital Age (Wiley & Sons, New York, 2006).Google Scholar
Breuninger, J., Becker, R., et al. et al. : Generative Fertigung mit Kunststoffen: Konzeption und Konstruktion für Selektives Lasersintern (Springer Verlag, Berlin, Heidelberg, 2013).Google Scholar
Dominighaus, H.: Kunststoffe – Eigenschaften und Anwendungen (Springer Verlag, Berlin, Heidelberg, 2012).CrossRefGoogle Scholar
Schmid, M. and Levy, G.: Lasersintermaterialien – aktueller Stand und Entwicklungspotential Fachtagung Additive Fertigung (Lehrstuhl für Kunststofftechnik, Erlangen, Germany, 2009), pp. 4355.Google Scholar
Drummer, D., Rietzel, D., and Kühnlein, F.: Development of a characterization approach for the sintering behaviour of new thermoplastics for selective laser sintering. Phys. Procedia: Proceedings of the LANE. Part B 5, 533542 (2010).CrossRefGoogle Scholar
Schmid, M., Amado, F., and Levy, G.: iCoPP - A New Polyolefin for Additive Manufacturing (SLS). Proceedings of the International Conference on Additive Manufacturing (Loughborough, UK, 2011).Google Scholar
Schmidt, M., Pohle, D., and Rechtenwald, T.: Selective laser sintering of PEEK. CIRP Ann. Manuf. Technol. 56(1), 205208 (2007).CrossRefGoogle Scholar
Kruth, J.P., Levy, G., Klocke, F., and Childs, T.H.C.: Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann.-Manuf. Technol. 56(2), 730759 (2007).CrossRefGoogle Scholar
Rietzel, D., Drexler, M., Kühnlein, F., and Drummer, D.: Influence of temperature fields on the processing of polymer powders by means of laser and mask sintering technology. In Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, 2011; pp. 252262.Google Scholar
Amado, A., Wegener, K., and Schmid, M.: Characterization and Modeling of Non-Isothermal Crystallization of Polyamide 12 and Co-Polypropylene During the SLS Process, Proceedings of PMI Conference, Ghent (Belgium), 2012.Google Scholar
Nakamura, K., Watanabe, T., Katayama, K., and Amano, T. et al. : Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. J. Appl. Polym. Sci. 16(5), 10771091 (1972).CrossRefGoogle Scholar
Hoffman, J.D. and Lauritzen, J.I. Jr.: Extension of theory of growth of chain folded polymer crystals to large undercoolings. J. Appl. Phys. 44, 4340 (1973).Google Scholar
Rietzel, D.: Werkstoffverhalten und Prozessanalyse beim Laser-Sintern von Thermoplasten. Ph.D. Dissertation, Technischen Fakultät der Universität Erlangen-Nürnberg, Erlangen, Germany, 2011.Google Scholar
Nelson, J.C., Xue, S., Barlow, J.W., Beaman, J.J., Marcus, H.L., and Bourell, D.L.: Model of the selective laser sintering of bisphenol-A polycarbonate. Ind. Eng. Chem. Res. 32(10), 23052317 (1993).CrossRefGoogle Scholar
Childs, T.H.C., Berzins, M., Ryder, G.R., and Tontowi, A.E.: Selective laser sintering of an amorphous polymer simulations and experiments. Proc. Inst. Mech. Eng., Part B 213(4), 333349 (1999).CrossRefGoogle Scholar
Amado, A., Schmid, M., Levy, G., and Wegener, K.: Advances in SLS powder characterization. In Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, 2011; pp. 438452.Google Scholar
Mazur, S.: Polymer Powder Technology, Narkis, M. and Rosenzweig, N. ed.; Wiley: New York, 1995.Google Scholar
Ehrenstein, G., Riedel, G., and Trawiel, P.: Thermal Analysis of Plastics: Theory and Practice, 1st ed. (Hanser-Verlag, Munich, 2004).Google Scholar
Cojazzi, G., Fichera, A., Garbuglio, C., Malta, V., and Zannetti, R.: The crystal structure of polylauryllactam (nylon 12). Die Makromolekulare Chemie 168, 289301 (1973).Google Scholar
Lippits, D.R., Rastogi, S., and Höhne, G.W.H.: Melting kinetics in polymers. Phys. Rev. Lett. 96, 218303 (2006).CrossRefGoogle ScholarPubMed
Novitsky, T.F., Mathias, L.J., Osborn, S., Ayotte, R., and Manning, S.: Synthesis and thermal behavior of polyamide 12,T random and block copolymers. Macromol. Symp. 313314(1), 9099 (2012).CrossRefGoogle Scholar
Crompton, T.R.: Thermo-Oxidative Degradation of Polymers (iSmithers Rapra Publishing, Shawbury, Shrewsbury, UK, 2010).Google Scholar
Gantillon, B., Spitz, R., and McKenna, T.F.: The solid state postcondensation of PET. Macromol. Mater. Eng. 289(1), 88105 (2004).Google Scholar
Dupin, S., Barrès, C., Lame, O., and Charmeau, J.-Y.: Fundamental study of the processing of polyamide 12 by selective laser sintering: Analysis of the relations between polymer features, process conditions and final properties of parts. Proceedings of the Polymer Processing Society 29th Annual Meeting PPS-29, Nuremberg (Germany), 2013.Google Scholar
internal, unpublished results.Google Scholar