Skip to main content Accessibility help
×
×
Home

Materials-structure-property correlation study of spark plasma sintered AlCuCrFeMnWx (x = 0, 0.05, 0.1, 0.5) high-entropy alloys

  • Devesh Kumar (a1) (a2), Vishnu K. Sharma (a1), Y.V.S.S. Prasad (a1) and Vinod Kumar (a3)

Abstract

A novel series of nanocrystalline AlCuCrFeMnWx (x = 0, 0.05, 0.1, 0.5) high-entropy alloys (HEAs) were synthesized by mechanical alloying followed by spark plasma sintering. The phase evolution of the current HEAs was studied using X-ray diffraction (XRD), transmission electron microscopy, and selected area electron diffraction. The XRD of the AlCuCrFeMn sintered HEA shows evolution of ordered B2 phase (AlFe type), sigma phase (Cr rich), and FeMn phase. AlCuCrFeMnWx (x = 0.05, 0.1, 0.5 mol) shows formation of ordered B2 phases, sigma phases, FeMn phases, and BCC phases. Micro-hardness of the AlCuCrFeMnWx samples was measured by Vickers microindentation and the maximum value observed is 780 ± 12 HV. As the tungsten content increases, the fracture strength under compression increases from 1010 to 1510 MPa. Thermodynamic parameters of present alloys confirm the crystalline phase formation, and finally structure–property relationship was proposed by conventional strengthening mechanisms.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: vk.iitk@gmail.com

References

Hide All
1.Murty, B.S., Yeh, J.W., and Ranganathan, S.: High-Entropy Alloy, 1st ed. (Elsevier Inc., London, 2014).
2.Yeh, J.W.: Recent progress in high-entropy alloys. Ann. Chimie Sci. Matériaux 31, 633648 (2006).
3.Yeh, J.W., Chen, S.K., Gan, J.Y., Lin, S.J., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 35, 25332536 (2004).
4.Maulik, O., Kumar, D., Kumar, S., Fabijanic, D.M., and Kumar, V.: Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics 77, 4656 (2016).
5.Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 57235734 (2012).
6.Yao, H.W., Qiao, J.W., Gao, M.C., Hawk, J.A., Ma, S.G., Zhou, H.F., and Zhang, Y.: NbTaV–(Ti, W) refractory high-entropy alloys: Experiments and modeling. Mater. Sci. Eng., A 674, 203211 (2016).
7.Miracle, D.B.: Critical assessment 14: High entropy alloys and their development as structural materials. Mater. Sci. Technol. 31, 11421147 (2015).
8.Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183202 (2016).
9.Han, Z.D., Luan, H.W., Liua, X., Chen, N., Li, X.Y., Shao, Y., and Yao, K.F.: Microstructures and mechanical properties of TixNbMoTaW refractory high entropy alloys. Mater. Sci. Eng., A 712, 380385 (2018).
10.Yao, H.W., Qiao, J.W., Hawk, J.A., Zhou, H.F., Chen, M.W., and Gao, M.C.: Mechanical properties of refractory high-entropy alloys: Experiments and modeling. J. Alloys Compd. 696, 11391150 (2017).
11.Jiang, H., Jiang, L., Han, K., Lu, Y., Wang, T., Cao, Z., and Li, T.: Effects of tungsten on microstructure and mechanical properties of CrFeNiV0.5Wx and CrFeNi2V0.5Wx high-entropy alloys. J. Mater. Eng. Perform. 24, 45944600 (2015).
12.Xian, X., Lin, L., Zhong, Z., Zhang, C., Chen, C., Song, K., Cheng, J., and Wu, Y.: Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCux high-entropy alloys. Mater. Sci. Eng., A 713, 134140 (2018).
13.Zhang, L.J., Yu, P.F., Zhang, M.D., Liu, D.J., Zhou, Z., Ma, M.Z., Liaw, P.K., Lia, G., and Liu, R.P.: Microstructure and mechanical behaviors of GdxCoCrCuFeNi high-entropy alloys. Mater. Sci. Eng., A 707, 708716 (2017).
14.Chen, X., Sui, Y., Qi, J., He, Y., Wei, F., Meng, Q., and Sun, Z.: Microstructure of Al1.3CrFeNi eutectic high entropy alloy and oxidation behavior at 1000 °C. J. Mater. Res. 32, 21092116 (2017).
15.Kumar, D., Maulik, O., Kumar, S., Prasad, Y.V.S.S., and Kumar, V.: Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Mater. Chem. Phys. 210, 7177 (2018).
16.Khodabakhshi, F., Haghshenas, M., Eskandari, H., and Koohbor, B.: Hardness-strength relationships in fine and ultra-fine grained metals processed through constrained groove pressing. Mater. Sci. Eng., A 636, 331339 (2015).
17.Takeuchi, A. and Inoue, A.: Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater. Trans. JIM 41, 13721378 (2000).
18.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructure and properties of high-entropy alloy. Prog. Mater. Sci. 61, 193 (2014).
19.Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc and bcc phase in high entropy alloy. J. Appl. Phys. 109, 103505 (2011).
20.Dong, Y., Lu, Y., Jiang, L., Wang, T., and Li, T.: Effects of electronegativity on the stability of topologically closed packed phase in high entropy alloy. Intermetallics 52, 105e109 (2014).
21.Kumar, D., Maulik, O., Kumar, S., Prasad, Y.V.S.S., Sharma, V.K., and Kumar, V.: Impact of tungsten on phase evolution in nanocrystalline AlCuCrFeMnWx (x = 0, 0.05, 0.1, and 0.5 mol) high entropy alloys. Mater. Res. Express 4, 114004 (2018).
22.Tsai, M.H., Tsai, K.Y., Tsai, C.W., Lee, C., Juan, C.C., and Yeh, J.W.: Criterion for sigma phase formation in Cr- and V-containing high entropy alloys. Mater. Res. Lett. 1, 207212 (2013).
23.Tabor, D.: The hardness and strength of metals. J. Inst. Met. 79, 118 (1951).
24.Ganji, R.S., Karthik, P.S., Rao, K.B.S., and Rajulapati, K.V.: Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods. Acta Mater. 125, 5868 (2017).
25.Sriharitha, R., Murty, B.S., and Kottada, R.S.: Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. J. Alloys Compd. 583, 419426 (2014).
26.Williamson, G.K. and Smallman, R.E.: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1, 3446 (1956).
27.Labusch, R.: Statistical theories of solid solution hardening. Acta Metall. 20, 917927 (1972).
28.Senkov, O.N., Scott, J.M., Senkova, S.V., Meisenkothen, F., Miracle, D.B., and Woodward, C.F.: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47, 40624074 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Kumar et al. supplementary material
Kumar et al. supplementary material 1

 Word (765 KB)
765 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed