Skip to main content Accessibility help
×
×
Home

Measuring optical properties of individual SnO2 nanowires via valence electron energy-loss spectroscopy

  • Derek R. Miller (a1), Robert E. Williams (a2), Sheikh A. Akbar (a1), Pat A. Morris (a1) and David W. McComb (a2)...

Abstract

For the first time, valence electron energy-loss spectroscopy (VEELS) was applied to individual single-crystalline SnO2 nanowires to investigate the dielectric function, band gap, and optical absorption coefficient. The results are compared with data from optical techniques such as spectroscopic ellipsometry and UV-Vis, and theoretical calculations from variations of density functional theory. The data obtained agree well with the standard optical and theoretical techniques. The dielectric function and optical absorption coefficient are given up to 20 eV, which otherwise requires a synchrotron source and large single crystals via optical methods. The energy loss function is given up to 40 eV, which gives a useful comparison to previous theoretical studies in an energy range that cannot be achieved via optical measurements. The comparison gives confidence in the accuracy of this method for exploring spatially-resolved measurements in individual nanoparticles or more complex nanostructures that are otherwise difficult to measure accurately using optical techniques.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: mccomb.29@osu.edu

Footnotes

Hide All

Contributing Editor: Gary L. Messing

Footnotes

References

Hide All
1. Klein, A., Körber, C., Wachau, A., Säuberlich, F., Gassenbauer, Y., Harvey, S.P., Proffit, D.E., and Mason, T.O.: Transparent conducting oxides for photovoltaics: Manipulation of fermi level, work function and energy band alignment. Materials 3, 4892 (2010).
2. Korotcenkov, G. and Cho, B.K.: Bulk doping influence on the response of conductometric SnO2 gas sensors: Understanding through cathodoluminescence study. Sens. Actuators, B 196, 80 (2014).
3. Wu, C.H. and Ng, H.Y.: Photodegradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans: Direct photolysis and photocatalysis processes. J. Hazard. Mater. 151, 507 (2008).
4. Liu, R., Chen, Y., Wang, F., Cao, L., Pan, A., Yang, G., Wang, T., and Zou, B.: Stimulated emission from trapped excitons in SnO2 nanowires. Phys. E 39, 223 (2007).
5. He, J.H., Wu, T.H., Hsin, C.L., Li, K.M., Chen, L.J., Chueh, Y.L., Chou, L.J., and Wang, Z.L.: Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. Small 2, 116 (2006).
6. Lee, S.Y., Shin, Y.H., Kim, Y., Kim, S., and Ju, S.: Emission characteristics of diameter controlled SnO2 nanowires. J. Lumin. 131, 2565 (2011).
7. Das, S. and Jayaraman, V.: SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112 (2014).
8. Krivanek, O.L., Lovejoy, T.C., Murfitt, M.F., Skone, G., Batson, P.E., and Dellby, N.: Towards sub-10 meV energy resolution STEM-EELS. J. Phys.: Conf. Ser. 522, 12023 (2014).
9. Wang, J., Li, Q., and Egerton, R.F.: Probing the electronic structure of ZnO nanowires by valence electron energy loss spectroscopy. Micron 38, 346 (2007).
10. Liu, Q., March, K., and Crozier, P.A.: Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy. Ultramicroscopy 178, 211 (2017).
11. Rafferty, B. and Brown, L.: Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 58, 10326 (1998).
12. Borges, P.D., Scolfaro, L.M.R., Leite Alves, H.W., and Da Silva, E.F.: Electronic structure and dielectric properties calculations of pure tin dioxide and of vacancies in tin dioxide. AIP Conf. Proc. 1199, 124 (2009).
13. Schleife, A., Varley, J., Fuchs, F., Rödl, C., Bechstedt, F., Rinke, P., Janotti, A., and Van de Walle, C.: Tin dioxide from first principles: Quasiparticle electronic states and optical properties. Phys. Rev. B: Condens. Matter Mater. Phys. 83, 1 (2011).
14. Nabi, Z., Kellou, A., Méçabih, S., Khalfi, A., and Benosman, N.: Opto-electronic properties of rutile SnO2 and orthorhombic SnS and SnSe compounds. Mater. Sci. Eng., B 98, 104 (2003).
15. Canestraro, C.D., Roman, L.S., and Persson, C.: Polarization dependence of the optical response in SnO2 and the effects from heavily F doping. Thin Solid Films 517, 6301 (2009).
16. Feneberg, M., Lidig, C., Lange, K., Goldhahn, R., Neumann, M.D., Esser, N., Bierwagen, O., White, M.E., Tsai, M.Y., and Speck, J.S.: Ordinary and extraordinary dielectric functions of rutile SnO2 up to 20 eV. Appl. Phys. Lett. 104, 2 (2014).
17. Cox, D.F. and Hoflund, G.B.: An electronic and structural interpretation of tin oxide ELS Spectra. Surf. Sci. 151, 202 (1985).
18. Chetri, P. and Choudhury, A.: Investigation of optical properties of SnO2 nanoparticles. Phys. E 47, 257 (2013).
19. Park, Y.R. and Kim, K.J.: Sputtering growth and optical properties of [100]-oriented tetragonal SnO2 and its Mn alloy films. J. Appl. Phys. 94, 6401 (2003).
20. Reimann, K. and Steube, M.: Experimental determination of the electronic band structure of SnO2 . Solid State Commun. 105, 649 (1998).
21. Nagasawa, M. and Shionoya, S.: Exciton structure in optical absorption of SnO2 crystals. Phys. Lett. 22, 409 (1966).
22. Robertson, J.: Electronic structure of SnO2, GeO2, PbO2, TeO2 and MgF2 . J. Phys. C: Solid State Phys. 12, 4767 (1979).
23. Miller, D.R., Williams, R.E., Akbar, S.A., Morris, P.A., and Mccomb, D.W.: STEM-cathodoluminescence of SnO2 nanowires and powders. Sens. Actuators, B 240, 193 (2017).
24. Mathur, S. and Barth, S.: Molecule-based chemical vapor growth of aligned SnO2 nanowires and branched SnO2/V2O5 heterostructures. Small 3, 2070 (2007).
25. Yu, W.D., Li, X.M., and Gao, X.D.: Microstructure and photoluminescence properties of bulk-quantity SnO2 nanowires coated with ZnO nanocrystals. Nanotechnology 16, 2770 (2005).
26. Kar, A., Stroscio, M.A., Meyyappan, M., Gosztola, D.J., Wiederrecht, G.P., and Dutta, M.: Tailoring the surface properties and carrier dynamics in SnO2 nanowires. Nanotechnology 22, 285709 (2011).
27. Egerton, R.F.: New techniques in electron energy-loss spectroscopy and energy-filtered imaging. Micron 34, 127 (2003).
28. Egerton, R.F.: Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107, 575 (2007).
29. Egerton, R.F.: Electron Energy-loss Spectroscopy in the Electron Microscope, 3rd ed. (Springer, New York, Dordrecht, Heidelberg, London, 2011).
30. Tsokkou, D., Othonos, A., and Zervos, M.: Carrier dynamics and conductivity of SnO2 nanowires investigated by time-resolved terahertz spectroscopy. Appl. Phys. Lett. 100, 133101 (2012).
31. Goldsmith, S., Çetinörgü, E., and Boxman, R.L.: Modeling the optical properties of tin oxide thin films. Thin Solid Films 517, 5146 (2009).
32. Stöger-Pollach, M.: Optical properties and bandgaps from low loss EELS: Pitfalls and solutions. Micron 39, 1092 (2008).
33. Egerton, R.F.: Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 16502 (2009).
34. Daniels, H., Brown, A., Scott, A., Nichells, T., Rand, B., and Brydson, R.: Experimental and theoretical evidence for the magic angle in transmission electron energy loss spectroscopy. Ultramicroscopy 96, 523 (2003).
35. Liberti, E., Menzel, R., Shaffer, M.S.P., and McComb, D.: Probing the size dependence on the optical modes of anatase nanoplatelets using STEM-EELS. Nanoscale 8, 9727 (2016).
36. Hage, F.S., Ramasse, Q.M., Kepaptsoglou, D.M., Prytz, O., Gunnaes, A.E., Helgesen, G., and Brydson, R.: Topologically induced confinement of collective modes in multilayer graphene nanocones measured by momentum-resolved STEM-VEELS. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 1 (2013).
37. Najafi, E., Hitchcock, A.P., Rossouw, D., and Botton, G.A.: Mapping defects in a carbon nanotube by momentum transfer dependent electron energy loss spectromicroscopy. Ultramicroscopy 113, 158 (2012).
38. Schattschneider, P., Hébert, C., Franco, H., and Jouffrey, B.: Anisotropic relativistic cross sections for inelastic electron scattering, and the magic angle. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 045142 (2005).
39. Murphy, A.B.: Optical properties of an optically rough coating from inversion of diffuse reflectance measurements. Appl. Opt. 46, 3133 (2007).
40. Zarrinkhameh, M., Zendehnam, A., Hosseini, S.M., Robatmili, N., and Arabzadegan, M.: Effect of oxidation and annealing temperature on optical and structural properties of SnO2 . Bull. Mater. Sci. 37, 533 (2014).
41. Sundaram, K.B. and Bhagavat, G.K.: Optical absorption studies on tin oxide films. J. Phys. D: Appl. Phys. 14, 921 (1981).
42. López, R. and Gómez, R.: Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 61, 1 (2012).
43. Roman, L.S., Valaski, R., Canestraro, C.D., Magalhães, E.C.S., Persson, C., Ahuja, R., da Silva, E.F., Pepe, I., and da Silva, A.F.: Optical band-edge absorption of oxide compound SnO2 . Appl. Surf. Sci. 252, 5361 (2006).
44. Baco, S., Chik, A., and Md Yassin, F.: Study on optical properties of tin oxide thin film at different annealing temperature. J. Sci. Technol. 4, 61 (2012).
45. Tauc, J., Grigorovici, R., and Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627 (1966).
46. Borges, P.D., Scolfaro, L.M.R., Leite Alves, H.W., and Silva, E.F.: DFT study of the electronic, vibrational, and optical properties of SnO2 . Theor. Chem. Acc. 126, 39 (2010).
47. Liu, Q.J., Liu, Z.T., and Feng, L.P.: First-principles calculations of structural, electronic and optical properties of tetragonal SnO2 and SnO. Comput. Mater. Sci. 47, 1016 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed