Skip to main content Accessibility help
×
×
Home

Mechanical and magnetic properties of spark plasma sintered soft magnetic FeCo alloy reinforced by carbon nanotubes

  • Amar J. Albaaji (a1), Elinor G. Castle (a2), Mike J. Reece (a2), Jeremy P. Hall (a1) and Sam L. Evans (a3)...
Abstract

Different volume fractions (0.5–4.5 vol%) of carbon nanotubes (CNTs) were used to reinforce a binary Fe50Co soft magnetic alloy. The first method for dispersion involved dry mixing and ball milling of the powder, while the second included wet mixing in dimethylformamide under ultrasonic agitation, drying and then dry ball milling. The powders were consolidated using spark plasma sintering. Tensile test and SEM analyses were performed to characterize the mechanical properties and the fracture surface of the sintered materials. The best magnetic and mechanical properties were achieved using the first method. A maximum enhancement in tensile strength of around 20% was observed in the 0.5 vol% CNT composite with improved elongation compared to the monolithic Fe50Co alloy. In addition, the magnetic properties were enhanced by adding CNTs up to 1 vol%, and an improvement in densification was observed in composites up to 1.5 vol% CNT with respect to monolithic Fe50Co alloy.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: amar.jabar@yahoo.com
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

Footnotes
References
Hide All
1. Sundar, R.S. and Deevi, S.C.: Soft magnetic FeCo alloys: Alloy development, processing, and properties. Int. Mater. Rev. 50, 158 (2005).
2. Clegg, D.W. and Buckely, R.A.: The disorder–order transformation in iron–cobalt based alloys. Met. Sci. 7, 48 (1973).
3. Yu, R.H., Basu, S., Ren, L., Zhang, Y., Parvizi-Majidi, A., Unruh, K.M., and Xiao, J.Q.: High temperature soft magnetic materials: FeCo alloys and composites. IEEE Trans. Magn. 36, 3388 (2000).
4. George, E.P., Gubbi, A.N., Baker, I., and Robertson, L.: Mechanical properties of soft magnetic FeCo alloys. Mater. Sci. Eng., A 329, 325 (2002).
5. Zhao, L. and Baker, I.: The effect of grain size and FeCo ratio on the room temperature yielding of FeCo. Acta Metall. Mater. 42, 1953 (1994).
6. Zhao, L., Baker, I., and George, E.P.: Room temperature fracture of FeCo. Mater. Res. Soc. Symp. Proc. 288, 501 (1993).
7. Bowen, P. and Doe, T.J.A.: Tensile properties of particulate-reinforced metal matrix composites. Composites, Part A 27, 655 (1996).
8. Kumar, M., Viola, G., Reece, M.J., Hall, J., and Evans, S.: Influence of coated SiC particulates on the mechanical and magnetic behaviour of Fe–Co alloy composites. J. Mater. Sci. 49, 2578 (2013).
9. Treacy, M.M.J., Ebbesen, T.W., and Gibson, J.M.: Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).
10. Chen, X., Xia, J., Peng, J., Li, W., and Xie, S.: Carbon-nanotube metal-matrix composites prepared by electroless plating. Compos. Sci. Technol. 60, 301 (2000).
11. Bakshi, S.R., Lahiri, D., and Agarwal, A.: Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev. 55, 41 (2010).
12. Kong, F.Z., Zhang, X.B., Xiong, W.Q., Liu, F., Huang, W.Z., Sun, Y.L., Tu, J.P., and Chen, X.W.: Continuous Ni-layer on multiwall carbon nanotubes by an electroless. Surf. Coat. Technol. 155, 33 (2002).
13. Mani, M., Viola, G., Reece, M., Evance, S.L., and Hall, J.: Improvement of interfacial bonding in carbon nanotube reinforced Fe–50Co composites by Ni–P coating: Effect on magnetic and mechanical properties. Mater. Sci. Eng., B 188, 94 (2014).
14. Song, X., Liu, X., and Zhang, J.: Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering. J. Am. Ceram. Soc. 89, 494 (2006).
15. Saheb, N., Iqbal, Z., Khalil, A., Hakeem, A., Al Aqeeli, N., Laoui, T., Al-Qutub, A., and Kirchner, R.: Spark plasma sintering of metals and metal matrix nanocomposites: A review. J. Nanomater. 2012, 1 (2012).
16. Kumar, M., Viola, G., Hall, J., Grasso, S., and Reece, M.: Observations of Curie point transition during spark plasma sintering of ferromagnetic materials. J. Magn. Magn. Mater. 382, 202 (2015).
17. Hirsch, A. and Vostrowsky, O.: Functionalization of Carbon Nanotubes, Vol. 245 (Springer, Berlin, 2005); pp. 193237.
18. Bahr, J.L., Yang, J., Kosynkin, D.V., Bronikowski, M.J., Smalley, R.E., and Tour, J.M.: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 123, 6536 (2001).
19. Ham, H., Choi, Y., and Chung, I.: An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J. Colloid Interface Sci. 286, 216 (2005).
20. Mani, M., Viola, G., Reece, M., Hall, J., and Evans, S.: Structural and magnetic characterization of spark plasma sintered Fe–50Co alloys. Mater. Res. Soc. 1516, 201 (2012).
21. Anderson, P.: A universal DC characterisation system for hard and soft magnetic materials. J. Magn. Magn. Mater. 320, 20 (2008).
22. George, E.D.: Mechanical Metallurgy, 3rd ed. (McGraw-Hill, New York. 1986).
23. Locci, A.M., Orru, R., Cao, G., and Munir, Z.A.: Effect of ball milling on simultaneous spark plasma synthesis and densification of TiC–TiB2 composites. Mater. Sci. Eng., A 434, 23 (2006).
24. Thomson, K.E., Jiang, D., Ritchie, R.O., and Mukherjee, A.K.: A preservation study of CNTs in alumina-based nanocomposites via Raman spectroscopy and nuclear magnetic resonance. Appl. Phys. A 89, 651 (2007).
25. Cullity, B.D.: Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Reading, 1978).
26. Alben, R., Becker, J.J., and Chi, M.C.: Random anisotropy in amorphous ferromagnets. J. Appl. Phys. 49, 1653 (1978).
27. Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystlline ferromagnets. IEEE Trans. Magn. 26, 1397 (1990).
28. Couderchon, G. and Tiers, J.F.: Some aspects of magnetic properties of Ni–Fe and Co–Fe alloys. J. Magn. Magn. Mater. 26, 196 (1982).
29. Pfeifer, F. and Radeloff, C.: Soft magnetic Ni–Fe and Co–Fe alloys—Some physical and metallurgical aspects. J. Magn. Magn. Mater. 19, 190 (1980).
30. Duckham, A., Zhang, D.Z., Liang, D., Luzin, V., Cammarata, R.C., Leheny, R.L., Chien, C.L., and Weihs, T.P.: Temperature dependent mechanical properties of ultra-fine grained FeCo–2V. Acta Mater. 51, 4083 (2003).
31. Kawahara, K.: Effect of carbon on mechanical properties in Fe50Co50 alloy. J. Mater. Sci. 18, 2047 (1983).
32. Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., and Veríssimo, C.: Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon 44, 2202 (2006).
33. Osswald, S., Havel, M., and Gogotsi, Y.: Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 38, 728 (2007).
34. Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A., and Dresselhaus, M.S.: Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413 (2011).
35. Kwon, H., Estili, M., Takagi, K., Miyazaki, T., and Kawasaki, A.: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47, 570 (2009).
36. Inam, F., Yan, H., Reece, M., and Peijs, T.: Structural and chemical stability of multiwall carbon nanotubes in sintered ceramic nanocomposite. Adv. Appl. Ceram. 109, 240 (2010).
37. Albaaji, A.J., Castle, E.G., Reece, M.J., Hall, J.P., and Evans, S.L.: Synthesis and properties of graphene and graphene/carbon nanotube-reinforced soft magnetic FeCo alloy composites by spark plasma sintering. J. Mater. Sci. 51, 7624 (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed