Skip to main content

Mechanical and thermal properties of Yb2SiO5: First-principles calculations and chemical bond theory investigations

  • Huimin Xiang (a1), Zhihai Feng (a1) and Yanchun Zhou (a1)

Ytterbium monosilicate (Yb2SiO5) is a promising candidate for environmental barrier coating. However, its mechanical and thermal properties are not well understood. In this work, the structural, mechanical, and thermal properties of Yb2SiO5 are studied by combining density functional theory and chemical bond theory calculations. Based on the calculated equilibrium crystal structure, heterogeneous bonding nature and distortion of the structure are revealed. Meanwhile, the full set of elastic constants, polycrystalline mechanical properties, and elastic anisotropy of Yb2SiO5 are presented. In addition, the minimum thermal conductivity of Yb2SiO5 was determined to be 0.74 W m−1 K−1. The theoretical results highlight the potential application of Yb2SiO5 in a thermal and environmental barrier coating.

Corresponding author
a) Address all correspondence to this author. e-mail:,
Hide All
1. Raj, R.: Fundamental research in structural ceramics for service near 2000°C. J. Am. Ceram. Soc. 76, 2147 (1993).
2. Smialek, J.L., Robinson, R.C., Opila, E.J., Fox, D.S., and Jacobson, N.S.: SiC and Si3N4 scale volatility under combustor conditions. Adv. Compos. Mater. 8, 33 (1999).
3. Klemm, H., Taut, C., and Wötting, G.: Long-term stability of nonoxide ceramics in an oxidative environment at 1500°C. J. Eur. Ceram. Soc. 23, 619 (2003).
4. Lee, K.N.: Current status of environmental barrier coatings for Si-based ceramics. Surf. Coat. Technol. 133134, 1 (2000).
5. Dericioglu, A.F., Zhu, S., Kagawa, Y., and Kasano, H.: Damage behavior of air-plasma-sprayed thermal barrier coatings under foreign object impact. Adv. Eng. Mater. 5, 735 (2003).
6. Lee, K.N., Eldridge, J.I., and Robinson, R.C.: Residual stresses and their effects on the durability of environmental barrier coatings for SiC ceramics. J. Am. Ceram. Soc. 88, 3483 (2005).
7. Lee, K.N., Fox, D.S., and Bansal, N.P.: Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc. 25(10), 17051715 (2005).
8. Chen, H.F., Gao, Y.F., Liu, Y., and Luo, H.J.: Hydrothermal synthesis of ytterbium silicate nanoparticles. Inorg. Chem. 49, 1942 (2010).
9. Felsche, J.: The Crystal Chemistry of the Rare-Earth Silicates (Springer, Heidelberg, Berlin, 1973).
10. Klemm, H.: Silicon nitride for high-temperature applications. J. Am. Ceram. Soc. 93, 1501 (2010).
11. Wen, H.M., Dong, S.M., He, P., Wang, Z., Zhou, H.J., and Zhang, X.Y.: Sol–gel synthesis and characterization of ytterbium silicate powders. J. Am. Ceram. Soc. 90, 4043 (2007).
12. Khan, Z.S., Zou, B., Huang, W., Fan, X., Gu, L., Chen, X., Zeng, S., Wang, C., and Cao, X.: Synthesis and characterization of Yb and Er based monosilicate powders and durability of plasma sprayed Yb2SiO5 coatings on C/C–SiC composites. Mater. Sci. Eng., B 177, 184 (2012).
13. Clarke, D.R.: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163164, 67 (2003).
14. Liu, B., Wang, J.Y., Li, F.Z., and Zhou, Y.C.: Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater. 58, 4369 (2010).
15. Slack, G.A.: Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321 (1973).
16. Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 (2002).
17. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).
18. Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
19. Feng, J., Xiao, B., Wan, C.L., Qu, Z.X., Huang, Z.C., Chen, J.C., Zhou, R., and Pan, W.: Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore. Acta Mater. 59, 1742 (2011).
20. Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).
21. Pfrommer, B.G., Côté, M., Louie, S.G., and Cohen, M.L.: Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131, 233 (1997).
22. Milman, V. and Warren, M.C.: Elasticity of hexagonal BeO. J. Phys.: Condens. Matter 13, 241 (2001).
23. Voigt, W.: Lehrbuch der Kristallphysik (Taubner , Leipzig, 1928).
24. Reuss, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizittsbedingung für Einkristalle. Z. Angew, Math. Mech. 9, 49 (1929).
25. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., Sect. A 65, 349 (1952).
26. Green, D.J.: An Introduction to the Mechanical Properties of Ceramics (Cambridge University Press, Cambridge, 1993).
27. Xiang, H.M., Hai, F.Z., and Zhou, Y.C.: Ab initio computations of electronic, mechanical, lattice dynamical and thermal properties of ZrP2O7 . J. Eur. Ceram. Soc. 34, 1809 (2014).
28. Xiang, H.M., Hai, F.Z., and Zhou, Y.C.: Theoretical investigations on the structural, electronic, mechanical and thermal properties of MP2O7 (M = Ti, Hf). J. Am. Ceram. Soc. DOI: 10.1111/jace.12961 (2014).
29. Sun, L.C., Liu, B., Wang, J.M., Wang, J.Y., Zhou, Y.C., and Hu, Z.J.: Y4Si2O7N2: A new oxynitride with low thermal conductivity. J. Am. Ceram. Soc. 95, 3278 (2012).
30. Zhou, Y.C. and Liu, B.: Theoretical investigation of mechanical and thermal properties of MPO4 (M = Al, Ga). J. Eur. Ceram. Soc. 33, 2817 (2013).
31. Anderson, O.L.: A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909 (1963).
32. Sanditov, B.D., Tsydypov, S.B., and Sanditov, D.S.: Relation between the grüneisen constant and Poisson’s ratio of vitreous system. Acoust. Phys. 53, 594 (2007).
33. Anan’eva, G.V., Korovkin, A.M., Merkulyaeva, T.I., Morozova, A.M., Petrov, M.V., Savinova, I.R., Startsev, V.R., and Feofilov, P.P.: Growth of lanthanide oxyorthosilicate single crystals, and their structural and optical characteristics. Inorg. Mater. 17, 1037 (1981).
34. Sanchez-Portal, D., Artacho, E., and Soler, J.M.: Projection of plane-wave calculations into atomic orbitals. Solid State Commun. 95, 685 (1995).
35. Segall, M.D., Shah, R., Pickard, C.J., and Payne, M.C.: Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B 54, 16317 (1996).
36. Zhou, Y.C., Zhao, C., Wang, F., Sun, Y.J., Zheng, L.Y., and Wang, X.H.: Theoretical prediction and experimental investigation on the thermal and mechanical properties of bulk β-Yb2Si2O7 . J. Am. Ceram. Soc. 96, 3891 (2013).
37. Carvajal, J.J., García-Muñoz, J.L., Solé, R., Gavaldà, J., Massons, J., Solans, X., Díaz, F., and Aguiló, M.: Charge self-compensation in the nonlinear optical crystals Rb0.855Ti0.955Nb0.045OPO4 and RbTi0.927Nb0.056Er0.017OPO4 . Chem. Mater. 15, 2338 (2003).
38. Pauling, L.: The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010 (1929).
39. Born, M. and Huang, K.: Dynamical Theory of Crystal Lattices (Oxford University Press, London, 1954).
40. Wu, Z.J., Zhao, E.J., Xiang, H.P., Hao, X.F., Liu, X.J., and Meng, J.: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76, 054115 (2007).
41. Lambrecht, W.R.L., Segall, B., Methfessel, M., and Schilfgaarde, M.V.: Calculated elastic constants and deformation potentials of cubic SiC. Phys. Rev. B 44, 3685 (1991).
42. Wu, Z.G., Chen, X.J., Struzhkin, V.V., and Cohen, R.E.: Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles. Phys. Rev. B 71, 214103 (2005).
43. Wang, J.Y. and Zhou, Y.C.: Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides. Annu. Rev. Mater. Res. 39, 415 (2009).
44. Chen, X.Q., Niu, H.Y., Li, D.Z., and Li, Y.Y.: Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275 (2011).
45. Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Science Publications, Oxford, 1985).
46. Mohapatra, H. and Eckhardt, C.J.: Elastic constants and related mechanical properties of the monoclinic polymorph of the carbamazepine molecular crystal. J. Phys. Chem. B 112, 2293 (2008).
47. Blanco, M.A., Francisco, E., and Luaña, V.: GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57 (2004).
48. Car, R. and Parrinello, M.: Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471 (1985).
49. Zhang, S., Li, H., Zhou, S., and Pan, T.: Estimation thermal expansion coefficient from lattice energy for inorganic crystals. Jpn. J. Appl. Phys. 45, 8801 (2006).
50. Jacobson, N.S., Fox, D.S., Smialek, J.L., Opila, E.J., Dellacorte, C., and Lee, K.N.: ASM Handbook, Cramer, S.D. and Covino, B.S. Jr. ed.; ASM International: Materials Park, Ohio, Vol. 13B, 2005.
51. Sun, Z.Q., Zhou, Y.C., Wang, J.Y., and Li, M.S.: γ-Y2Si2O7, a machinable silicate ceramic: Mechanical properties and machinability. J. Am. Ceram. Soc. 90, 2535 (2007).
52. Luo, Y.X., Wang, J.M., Wang, J.Y., Li, J.N., and Hu, Z.J.: Theoretical predictions on elastic stiffness and intrinsic thermal conductivities of yttrium silicates. J. Am. Ceram. Soc. 97, 945 (2014).
53. Phillips, J.C. and Van Vechten, J.A.: Dielectric classification of crystal structures, ionization potentials, and band structures. Phys. Rev. Lett. 22, 705 (1969).
54. Van Vechten, J.A.: Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Phys. Rev. 182, 891 (1969).
55. Levine, B.F.: Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys. 59, 1463 (1973).
56. Xue, D. and Zhang, S.: Calculation of the nonlinear optical coefficient of the NdAl3(BO3)4 crystal. J. Phys.: Condens. Matter 8, 1949 (1996).
57. Liu, D., Zhang, S., and Wu, Z.: Lattice energy estimation for inorganic ionic crystals. Inorg. Chem. 42, 2465 (2003).
58. Zhang, S., Li, H., Li, H., Zhou, S., and Cao, X.: Calculation of the bulk modulus of simple and complex crystals with the chemical bond method. J. Phys. Chem. B 111, 1304 (2007).
59. Zhang, S., Li, H., Li, L., and Zhou, S.: Calculation of bulk modulus on carbon nitrides with chemical bond method. Appl. Phys. Lett. 91, 251905 (2007).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed