Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T21:21:45.889Z Has data issue: false hasContentIssue false

Mechanical and thermal properties of Yb2SiO5: First-principles calculations and chemical bond theory investigations

Published online by Cambridge University Press:  27 August 2014

Huimin Xiang
Affiliation:
Science and Technology on Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China
Zhihai Feng
Affiliation:
Science and Technology on Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China
Yanchun Zhou*
Affiliation:
Science and Technology on Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China
*
a)Address all correspondence to this author. e-mail: yczhou714@gmail.com, yczhou@imr.ac.cn
Get access

Abstract

Ytterbium monosilicate (Yb2SiO5) is a promising candidate for environmental barrier coating. However, its mechanical and thermal properties are not well understood. In this work, the structural, mechanical, and thermal properties of Yb2SiO5 are studied by combining density functional theory and chemical bond theory calculations. Based on the calculated equilibrium crystal structure, heterogeneous bonding nature and distortion of the structure are revealed. Meanwhile, the full set of elastic constants, polycrystalline mechanical properties, and elastic anisotropy of Yb2SiO5 are presented. In addition, the minimum thermal conductivity of Yb2SiO5 was determined to be 0.74 W m−1 K−1. The theoretical results highlight the potential application of Yb2SiO5 in a thermal and environmental barrier coating.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Raj, R.: Fundamental research in structural ceramics for service near 2000°C. J. Am. Ceram. Soc. 76, 2147 (1993).Google Scholar
Smialek, J.L., Robinson, R.C., Opila, E.J., Fox, D.S., and Jacobson, N.S.: SiC and Si3N4 scale volatility under combustor conditions. Adv. Compos. Mater. 8, 33 (1999).Google Scholar
Klemm, H., Taut, C., and Wötting, G.: Long-term stability of nonoxide ceramics in an oxidative environment at 1500°C. J. Eur. Ceram. Soc. 23, 619 (2003).Google Scholar
Lee, K.N.: Current status of environmental barrier coatings for Si-based ceramics. Surf. Coat. Technol. 133134, 1 (2000).Google Scholar
Dericioglu, A.F., Zhu, S., Kagawa, Y., and Kasano, H.: Damage behavior of air-plasma-sprayed thermal barrier coatings under foreign object impact. Adv. Eng. Mater. 5, 735 (2003).Google Scholar
Lee, K.N., Eldridge, J.I., and Robinson, R.C.: Residual stresses and their effects on the durability of environmental barrier coatings for SiC ceramics. J. Am. Ceram. Soc. 88, 3483 (2005).Google Scholar
Lee, K.N., Fox, D.S., and Bansal, N.P.: Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc. 25(10), 17051715 (2005).Google Scholar
Chen, H.F., Gao, Y.F., Liu, Y., and Luo, H.J.: Hydrothermal synthesis of ytterbium silicate nanoparticles. Inorg. Chem. 49, 1942 (2010).CrossRefGoogle ScholarPubMed
Felsche, J.: The Crystal Chemistry of the Rare-Earth Silicates (Springer, Heidelberg, Berlin, 1973).Google Scholar
Klemm, H.: Silicon nitride for high-temperature applications. J. Am. Ceram. Soc. 93, 1501 (2010).Google Scholar
Wen, H.M., Dong, S.M., He, P., Wang, Z., Zhou, H.J., and Zhang, X.Y.: Sol–gel synthesis and characterization of ytterbium silicate powders. J. Am. Ceram. Soc. 90, 4043 (2007).Google Scholar
Khan, Z.S., Zou, B., Huang, W., Fan, X., Gu, L., Chen, X., Zeng, S., Wang, C., and Cao, X.: Synthesis and characterization of Yb and Er based monosilicate powders and durability of plasma sprayed Yb2SiO5 coatings on C/C–SiC composites. Mater. Sci. Eng., B 177, 184 (2012).Google Scholar
Clarke, D.R.: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163164, 67 (2003).CrossRefGoogle Scholar
Liu, B., Wang, J.Y., Li, F.Z., and Zhou, Y.C.: Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater. 58, 4369 (2010).CrossRefGoogle Scholar
Slack, G.A.: Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321 (1973).CrossRefGoogle Scholar
Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 (2002).Google Scholar
Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
Feng, J., Xiao, B., Wan, C.L., Qu, Z.X., Huang, Z.C., Chen, J.C., Zhou, R., and Pan, W.: Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore. Acta Mater. 59, 1742 (2011).Google Scholar
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).Google Scholar
Pfrommer, B.G., Côté, M., Louie, S.G., and Cohen, M.L.: Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131, 233 (1997).CrossRefGoogle Scholar
Milman, V. and Warren, M.C.: Elasticity of hexagonal BeO. J. Phys.: Condens. Matter 13, 241 (2001).Google Scholar
Voigt, W.: Lehrbuch der Kristallphysik (Taubner , Leipzig, 1928).Google Scholar
Reuss, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizittsbedingung für Einkristalle. Z. Angew, Math. Mech. 9, 49 (1929).Google Scholar
Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., Sect. A 65, 349 (1952).CrossRefGoogle Scholar
Green, D.J.: An Introduction to the Mechanical Properties of Ceramics (Cambridge University Press, Cambridge, 1993).Google Scholar
Xiang, H.M., Hai, F.Z., and Zhou, Y.C.: Ab initio computations of electronic, mechanical, lattice dynamical and thermal properties of ZrP2O7 . J. Eur. Ceram. Soc. 34, 1809 (2014).Google Scholar
Xiang, H.M., Hai, F.Z., and Zhou, Y.C.: Theoretical investigations on the structural, electronic, mechanical and thermal properties of MP2O7 (M = Ti, Hf). J. Am. Ceram. Soc. DOI: 10.1111/jace.12961 (2014).CrossRefGoogle Scholar
Sun, L.C., Liu, B., Wang, J.M., Wang, J.Y., Zhou, Y.C., and Hu, Z.J.: Y4Si2O7N2: A new oxynitride with low thermal conductivity. J. Am. Ceram. Soc. 95, 3278 (2012).Google Scholar
Zhou, Y.C. and Liu, B.: Theoretical investigation of mechanical and thermal properties of MPO4 (M = Al, Ga). J. Eur. Ceram. Soc. 33, 2817 (2013).Google Scholar
Anderson, O.L.: A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909 (1963).Google Scholar
Sanditov, B.D., Tsydypov, S.B., and Sanditov, D.S.: Relation between the grüneisen constant and Poisson’s ratio of vitreous system. Acoust. Phys. 53, 594 (2007).CrossRefGoogle Scholar
Anan’eva, G.V., Korovkin, A.M., Merkulyaeva, T.I., Morozova, A.M., Petrov, M.V., Savinova, I.R., Startsev, V.R., and Feofilov, P.P.: Growth of lanthanide oxyorthosilicate single crystals, and their structural and optical characteristics. Inorg. Mater. 17, 1037 (1981).Google Scholar
Sanchez-Portal, D., Artacho, E., and Soler, J.M.: Projection of plane-wave calculations into atomic orbitals. Solid State Commun. 95, 685 (1995).Google Scholar
Segall, M.D., Shah, R., Pickard, C.J., and Payne, M.C.: Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B 54, 16317 (1996).Google Scholar
Zhou, Y.C., Zhao, C., Wang, F., Sun, Y.J., Zheng, L.Y., and Wang, X.H.: Theoretical prediction and experimental investigation on the thermal and mechanical properties of bulk β-Yb2Si2O7 . J. Am. Ceram. Soc. 96, 3891 (2013).Google Scholar
Carvajal, J.J., García-Muñoz, J.L., Solé, R., Gavaldà, J., Massons, J., Solans, X., Díaz, F., and Aguiló, M.: Charge self-compensation in the nonlinear optical crystals Rb0.855Ti0.955Nb0.045OPO4 and RbTi0.927Nb0.056Er0.017OPO4 . Chem. Mater. 15, 2338 (2003).Google Scholar
Pauling, L.: The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010 (1929).Google Scholar
Born, M. and Huang, K.: Dynamical Theory of Crystal Lattices (Oxford University Press, London, 1954).Google Scholar
Wu, Z.J., Zhao, E.J., Xiang, H.P., Hao, X.F., Liu, X.J., and Meng, J.: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76, 054115 (2007).CrossRefGoogle Scholar
Lambrecht, W.R.L., Segall, B., Methfessel, M., and Schilfgaarde, M.V.: Calculated elastic constants and deformation potentials of cubic SiC. Phys. Rev. B 44, 3685 (1991).CrossRefGoogle ScholarPubMed
Wu, Z.G., Chen, X.J., Struzhkin, V.V., and Cohen, R.E.: Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles. Phys. Rev. B 71, 214103 (2005).Google Scholar
Wang, J.Y. and Zhou, Y.C.: Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides. Annu. Rev. Mater. Res. 39, 415 (2009).CrossRefGoogle Scholar
Chen, X.Q., Niu, H.Y., Li, D.Z., and Li, Y.Y.: Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275 (2011).Google Scholar
Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Science Publications, Oxford, 1985).Google Scholar
Mohapatra, H. and Eckhardt, C.J.: Elastic constants and related mechanical properties of the monoclinic polymorph of the carbamazepine molecular crystal. J. Phys. Chem. B 112, 2293 (2008).Google Scholar
Blanco, M.A., Francisco, E., and Luaña, V.: GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57 (2004).Google Scholar
Car, R. and Parrinello, M.: Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471 (1985).CrossRefGoogle ScholarPubMed
Zhang, S., Li, H., Zhou, S., and Pan, T.: Estimation thermal expansion coefficient from lattice energy for inorganic crystals. Jpn. J. Appl. Phys. 45, 8801 (2006).Google Scholar
Jacobson, N.S., Fox, D.S., Smialek, J.L., Opila, E.J., Dellacorte, C., and Lee, K.N.: ASM Handbook, Cramer, S.D. and Covino, B.S. Jr. ed.; ASM International: Materials Park, Ohio, Vol. 13B, 2005.Google Scholar
Sun, Z.Q., Zhou, Y.C., Wang, J.Y., and Li, M.S.: γ-Y2Si2O7, a machinable silicate ceramic: Mechanical properties and machinability. J. Am. Ceram. Soc. 90, 2535 (2007).Google Scholar
Luo, Y.X., Wang, J.M., Wang, J.Y., Li, J.N., and Hu, Z.J.: Theoretical predictions on elastic stiffness and intrinsic thermal conductivities of yttrium silicates. J. Am. Ceram. Soc. 97, 945 (2014).Google Scholar
Phillips, J.C. and Van Vechten, J.A.: Dielectric classification of crystal structures, ionization potentials, and band structures. Phys. Rev. Lett. 22, 705 (1969).Google Scholar
Van Vechten, J.A.: Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Phys. Rev. 182, 891 (1969).Google Scholar
Levine, B.F.: Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys. 59, 1463 (1973).Google Scholar
Xue, D. and Zhang, S.: Calculation of the nonlinear optical coefficient of the NdAl3(BO3)4 crystal. J. Phys.: Condens. Matter 8, 1949 (1996).Google Scholar
Liu, D., Zhang, S., and Wu, Z.: Lattice energy estimation for inorganic ionic crystals. Inorg. Chem. 42, 2465 (2003).Google Scholar
Zhang, S., Li, H., Li, H., Zhou, S., and Cao, X.: Calculation of the bulk modulus of simple and complex crystals with the chemical bond method. J. Phys. Chem. B 111, 1304 (2007).Google Scholar
Zhang, S., Li, H., Li, L., and Zhou, S.: Calculation of bulk modulus on carbon nitrides with chemical bond method. Appl. Phys. Lett. 91, 251905 (2007).Google Scholar