Skip to main content Accessibility help
×
Home

The mechanical behavior of a passivating surface under potentiostatic control

  • D. F. Bahr (a1), J. C. Nelson (a1), N. I. Tymiak (a1) and W. W. Gerberich (a1)

Abstract

Continuous microindentation has been carried out on an iron–3% silicon single crystal in 1 M sulfuric acid. The ability of the material to support elastic loading is directly linked to the presence of thermally grown oxide films and passive films applied through potentiostatic control of the sample. When the passive film is removed, either by chemical or electrochemical means, the iron alloy can no longer sustain pressures on the order of the theoretical shear strength of iron. Instead, the metal behaves in a traditional elastic-plastic manner when no film is present. The oxide film at the edges of the indentation can sustain applied tensile stresses up to 1.2 GPa prior to failure. Indentation in materials undergoing dissolution must account for the rate of material removal over the remote surface and the resulting plastic deformation around the contact of the indentation.

Copyright

References

Hide All
1.Vardwell, J. A., MacDougall, B., and Graham, M. J., J. Electrochem. Soc. 135, 413 (1988).
2.Davenport, A. J., Bardwell, J. A., and Vitus, C. M., J. Electrochem. Soc. 142, 721 (1995).
3.Biwer, B. M., Pellin, M. J., Schauer, M. W., and Gruen, D. M., Surf. Sci. 176, 377 (1986).
4.Boucherit, N., Hugot-LeGoff, A., and Joiret, S., Corr. Sci. 32, 497 (1991).
5.Gane, N. and Bowden, F. P., J. Appl. Phys. 39, 1432 (1968).
6.Pethica, J. B. and Tabor, D., Surf. Sci. 89, 182 (1979).
7.Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).
8.Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., J. Mater. Res. 8, 685 (1993).
9.Mann, A. B. and Pethica, J. B., Langmuir 12, 4583 (1996).
10.Mann, A. B. and Pethica, J. B., in Thin Films and Stresses and Mechanical Properties VI, edited by Gerberich, W. W., Gao, H., Sundgren, J. E., and Baker, S. P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), pp. 153158.
11.Corcoran, S. G., Coltan, R. J., Lilleodden, E. T., and Gerberich, W. W., in Thin Films and Stresses and Mechanical Properties VI, edited by Gerberich, W. W., Gao, H., Sundgren, J. E., and Baker, S. P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), pp. 159164.
12.Gerberich, W. W., Venkataraman, S. K., Huang, H., Harvey, S. E., and Kohlstedt, D. L., Acta Metall. Mater. 43, 1569 (1995).
13.Gerberich, W. W., Nelson, J. C., Lilleodden, E. T., Anderson, P., and Wyrobek, J. T., Acta Mater. 44, 3585 (1996).
14.Fontana, M. G., Corrosion Engineering (McGraw-Hill, New York, 1986), p. 349.
15.Latanision, R. M. and Staehle, R. W., Acta Metall. 17, 307 (1969).
16.Wu, T. W., J. Mater. Res. 6, 407 (1991).
17. Digital Instruments, Santa Barbara, CA.
18.Kaczorowski, M., Lee, C-S., and Gerberich, W. W., Mater. Sci. Eng. 81, 305 (1986).
19.Johnson, K. L., Contact Mechanics (Cambridge Univ. Press, Cambridge, 1985), pp. 9395.
20.Cottrell, A. H., Dislocations and Plastic Flow in Crystals (Oxford Press, Oxford, 1953), p. 9.
21.Gerberich, W. W., Davidson, D. L., and Kaczorowski, M., J. Mech. Phys. Solids. 38, 87 (1990).
22.Zielinski, W., Huang, H., Venkataraman, S., and Gerberich, W. W., Philos. Mag. 72, 1221 (1995).
23.Tabor, D., The Hardness of Metals (Oxford Press, Oxford, 1951).
24.Harvey, S., Huang, H., Venkataraman, S., and Gerberich, W. W., J. Mater. Res. 8, 1291 (1993).
25.Bahr, D. F. and Gerberich, W. W., Metall. Trans. 27A, 3793 (1996).
26.Rubin, B. T., Electro. Chem. Interfac. Electrochem. 58, 323 (1975).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed