Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T08:20:09.574Z Has data issue: false hasContentIssue false

Mechanical behavior of nanocrystalline Cu and Pd

Published online by Cambridge University Press:  31 January 2011

G.W. Nieman
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
J.R. Weertman
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
R.W. Siegel
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This report gives results of a study of the bulk mechanical properties of samples of nanocrystalline Cu and Pd consolidated from powders prepared by inert gas condensation. Fourier analysis x-ray diffraction techniques, used to determine average grain size and mean lattice strains of the as-consolidated samples, show grain sizes in the range of 3–50 nm and lattice strains ranging from 0.02–3%. Sample densities range from 97–72% of the density of a coarse-grained standard. Microhardness of the nanocrystalline samples exceeds that of annealed, coarse-grained samples by a factor of 2–5, despite indications that sample porosity reduces hardness values below the ultimate value. Uniaxial tensile strength of the nanocrystalline samples is similarly elevated above the value of the coarse-grained standard samples. Restrictions on dislocation generation and mobility imposed by ultrafine grain size are believed to be the dominant factor in raising strength. Residual stress may also play a role. Room temperature diffusional creep, predicted to be appreciable in nanocrystalline samples, was not found. Instead, samples appear to show logarithmic creep that is much smaller than the predicted Coble creep.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

References

1Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, edited by Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H. (Risø National Laboratory, Roskilde, 1981), p. 15.Google Scholar
2Birringer, R., Herr, U., and Gleiter, H., Suppl. Trans. Jpn. Inst. Metall. 27, 43 (1986).Google Scholar
3Birringer, R., Gleiter, H., Klein, H-P., and Marquardt, P., Phys. Lett. 102A, 365 (1984).CrossRefGoogle Scholar
4Granqvist, C. G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).CrossRefGoogle Scholar
5Siegel, R. W. and Hahn, H., in Current Trends in the Physics of Materials, edited by Yussouff, M. (World Sci. Publ. Co., 1987), p. 403.Google Scholar
6Hahn, H., Eastman, J. A., and Siegel, R. W., Ceramic Trans. IB, 1115 (1988).Google Scholar
7Siegel, R. W., Ramasamy, S., Hahn, H., Zongquan, Li, Ting, Lu, and Gronsky, R., J. Matei. Res. 3, 1367 (1988).Google Scholar
8Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. 23, 2013 (1989).CrossRefGoogle Scholar
9Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Met. et Mater. 24, 145 (1990).Google Scholar
10Hall, E. O., Proc. Phys. Soc. London B64, 747 (1951).CrossRefGoogle Scholar
11Petch, N. J., J. Iron Steel Inst. 174, 25 (1953).Google Scholar
12Armstrong, R. W., in Yield, Flow and Fracture of Polycrystals, edited by Baker, T. N. (Applied Science Publishers, London, 1983), p. 1.Google Scholar
13Hansen, N., in Yield, Flow and Fracture of Polycrystals, edited by Baker, T. N. (Applied Science Publishers, London, 1983), p. 311.Google Scholar
14Thompson, A. W., Baskes, M. I., and Flannagan, W. F., Acta Metall. 21, 1017 (1973).Google Scholar
15Coble, R. L., J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar
16Thompson, A. W., Acta Metall. 23, 1337 (1977).CrossRefGoogle Scholar
17Herr, U., Jing, J., Birringer, R., Gonser, U., and Gleiter, H., Appl. Phys. Lett. 50, 472 (1987).CrossRefGoogle Scholar
18Zhu, X., Birringer, R., Herr, U., and Gleiter, H., Phys. Rev. B 35, 9085 (1987).Google Scholar
19Schaefer, H. E., Wurschum, R., Scheytt, M., Birringer, R., and Gleiter, H., Mater. Sci. Forum 1518, 955 (1987).Google Scholar
20Rupp, J. and Birringer, R., Phys. Rev. B 36, 7888 (1987).CrossRefGoogle Scholar
21Horvath, J., Birringer, R., and Gleiter, H., Solid State Commun. 62, 319 (1987).Google Scholar
22Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).CrossRefGoogle Scholar
23Birringer, R., Hahn, H., Hofler, H., Karch, J., and Gleiter, H., Defect and Diffusion Forum 59, 17 (1988).Google Scholar
24Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. 23, 1679 (1989).Google Scholar
25Melendres, C. A., Narayanasamy, A., Maroni, V. A., and Siegel, R. W., J. Mater. Res. 4, 1246 (1989).CrossRefGoogle Scholar
26Eastman, J. A. and Thompson, L. J., in Interfaces between Polymers, Metals, and Ceramics, edited by DeKoven, B. M., Gellman, A. J., and Rosenberg, R. (Mater. Res. Soc. Symp. Proc. 153, Pittsburgh, PA, 1989), p. 27.Google Scholar
27Thomas, G. J., Siegel, R. W., and Eastman, J. A., Scripta Met. et Mater. 24, 201 (1990).Google Scholar
28Epperson, J. E., Siegel, R. W., White, J. W., Klippert, T. E., Narayanasamy, A., Eastman, J. A., and Trouw, F., in Multicomponent Ultrafine Microstructures, edited by McCandlish, L. E., Kear, B. H., Polk, D. E., and Siegel, R. W. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 15.Google Scholar
29Eastman, J. A., Liao, Y. X., Narayanasamy, A., and Siegel, R. W., in Processing Science of Advanced Ceramics, edited by Aksay, LA., McVay, G. L., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 155, Pittsburgh, PA, 1989), p. 255.Google Scholar
30Handbook of Chemistry and Physics, 62nd ed., edited by Weast, R. C. (CRC Press, Boca Raton, FL, 1981), p. B2.Google Scholar
31German, R. M., Powder Metallurgy Science (Metal Powder Industries Federation, 1984), p. 113.Google Scholar
32Fischmeister, H. F., Artz, E., and Olsson, L. R., Powder Met. 4, 179 (1978).Google Scholar
33Gutmanas, E. Y., Rabinkin, A., and Roitberg, M., Scripta Metall. 13, 11 (1979).CrossRefGoogle Scholar
34Warren, B. E., X-ray Diffraction (Addison-Wesley, Reading, MA, 1969), p. 251.Google Scholar
35Schwartz, L. H. and Cohen, J. B., Diffraction from Materials, 2nd ed. (Springer-Verlag, Berlin, 1987), p. 372.Google Scholar
36Guinier, A., X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies (W. H. Freeman and Co., San Francisco, CA, 1970), p. 121.Google Scholar
37Nandi, R. K., Kuo, H. K., Schlosberg, W., Wissler, G., Cohen, J. B., and Crist, B., J. Appl. Cryst. 17, 22 (1984).Google Scholar
38Wunderlich, W., Ishida, I., and Maurer, R., Scripta Met. et Mater. 24, 403 (1990).Google Scholar
39Keijser, R. de, Mittemeijer, E. J., and Rozendaal, H. C. F., J. Appl. Cryst. 16, 309 (1983).Google Scholar
40Nieman, G. W. and Weertman, J. R., Proc. of the Morris E. Fine symp., Detroit (1990), edited by Liaw, P. K.et al. (The Minerals, Metals and Materials Society, Warrendale, PA, 1991), p. 243.Google Scholar
41Long, N. J., Marzke, R. F., McKelvy, M., and Glaunsinger, W. S., Ultramicroscopy 20, 15 (1986).CrossRefGoogle Scholar
42Easterling, K. E. and Thölén, A. R., Powder Met. 16, 112 (1973).Google Scholar
43Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. 65, 305 (1989).CrossRefGoogle Scholar
44Tabor, D., The Hardness of Metals (Oxford University Press, London, 1951).Google Scholar
45Meyers, M. A. and Chawla, K. K., Mechanical Metallurgy Principles and Applications (Prentice-Hall Inc., Englewood Cliffs, NJ, 1964), p. 600.Google Scholar
46Pharr, G. M. and Oliver, W. C., J. Mater. Res. 4, 94 (1989).CrossRefGoogle Scholar
47Hansen, N. and Ralph, B., Acta Metall. 30, 411 (1982).CrossRefGoogle Scholar
48Hort, E., Diploma Thesis, Universitat des Saarlandes, Saarbr¨cken (1986).Google Scholar
49Metals Handbook Desk Edition, edited by Boyer, H. B. and Gall, T. L., 7–2 (1985).Google Scholar
50Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials, 2nd ed. (John Wiley and Sons, New York, 1983), p. 17.Google Scholar
51Weertman, J. and Weertman, J. R., in Physical Metallurgy, Part II, 3rd ed., edited by Cahn, R. W. and Haasen, P. (North Holland, Amsterdam, 1983), p. 1259.Google Scholar
52Hirth, J. P., Metall. Trans. 3, 3047 (1972).Google Scholar