Skip to main content
×
×
Home

Mechanical behavior of nanocrystalline Cu and Pd

  • G.W. Nieman (a1), J.R. Weertman (a1) and R.W. Siegel (a2)
Abstract

This report gives results of a study of the bulk mechanical properties of samples of nanocrystalline Cu and Pd consolidated from powders prepared by inert gas condensation. Fourier analysis x-ray diffraction techniques, used to determine average grain size and mean lattice strains of the as-consolidated samples, show grain sizes in the range of 3–50 nm and lattice strains ranging from 0.02–3%. Sample densities range from 97–72% of the density of a coarse-grained standard. Microhardness of the nanocrystalline samples exceeds that of annealed, coarse-grained samples by a factor of 2–5, despite indications that sample porosity reduces hardness values below the ultimate value. Uniaxial tensile strength of the nanocrystalline samples is similarly elevated above the value of the coarse-grained standard samples. Restrictions on dislocation generation and mobility imposed by ultrafine grain size are believed to be the dominant factor in raising strength. Residual stress may also play a role. Room temperature diffusional creep, predicted to be appreciable in nanocrystalline samples, was not found. Instead, samples appear to show logarithmic creep that is much smaller than the predicted Coble creep.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mechanical behavior of nanocrystalline Cu and Pd
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mechanical behavior of nanocrystalline Cu and Pd
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mechanical behavior of nanocrystalline Cu and Pd
      Available formats
      ×
Copyright
References
Hide All
1Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, edited by Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H. (Risø National Laboratory, Roskilde, 1981), p. 15.
2Birringer, R., Herr, U., and Gleiter, H., Suppl. Trans. Jpn. Inst. Metall. 27, 43 (1986).
3Birringer, R., Gleiter, H., Klein, H-P., and Marquardt, P., Phys. Lett. 102A, 365 (1984).
4Granqvist, C. G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).
5Siegel, R. W. and Hahn, H., in Current Trends in the Physics of Materials, edited by Yussouff, M. (World Sci. Publ. Co., 1987), p. 403.
6Hahn, H., Eastman, J. A., and Siegel, R. W., Ceramic Trans. IB, 1115 (1988).
7Siegel, R. W., Ramasamy, S., Hahn, H., Zongquan, Li, Ting, Lu, and Gronsky, R., J. Matei. Res. 3, 1367 (1988).
8Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. 23, 2013 (1989).
9Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Met. et Mater. 24, 145 (1990).
10Hall, E. O., Proc. Phys. Soc. London B64, 747 (1951).
11Petch, N. J., J. Iron Steel Inst. 174, 25 (1953).
12Armstrong, R. W., in Yield, Flow and Fracture of Polycrystals, edited by Baker, T. N. (Applied Science Publishers, London, 1983), p. 1.
13Hansen, N., in Yield, Flow and Fracture of Polycrystals, edited by Baker, T. N. (Applied Science Publishers, London, 1983), p. 311.
14Thompson, A. W., Baskes, M. I., and Flannagan, W. F., Acta Metall. 21, 1017 (1973).
15Coble, R. L., J. Appl. Phys. 34, 1679 (1963).
16Thompson, A. W., Acta Metall. 23, 1337 (1977).
17Herr, U., Jing, J., Birringer, R., Gonser, U., and Gleiter, H., Appl. Phys. Lett. 50, 472 (1987).
18Zhu, X., Birringer, R., Herr, U., and Gleiter, H., Phys. Rev. B 35, 9085 (1987).
19Schaefer, H. E., Wurschum, R., Scheytt, M., Birringer, R., and Gleiter, H., Mater. Sci. Forum 1518, 955 (1987).
20Rupp, J. and Birringer, R., Phys. Rev. B 36, 7888 (1987).
21Horvath, J., Birringer, R., and Gleiter, H., Solid State Commun. 62, 319 (1987).
22Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).
23Birringer, R., Hahn, H., Hofler, H., Karch, J., and Gleiter, H., Defect and Diffusion Forum 59, 17 (1988).
24Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. 23, 1679 (1989).
25Melendres, C. A., Narayanasamy, A., Maroni, V. A., and Siegel, R. W., J. Mater. Res. 4, 1246 (1989).
26Eastman, J. A. and Thompson, L. J., in Interfaces between Polymers, Metals, and Ceramics, edited by DeKoven, B. M., Gellman, A. J., and Rosenberg, R. (Mater. Res. Soc. Symp. Proc. 153, Pittsburgh, PA, 1989), p. 27.
27Thomas, G. J., Siegel, R. W., and Eastman, J. A., Scripta Met. et Mater. 24, 201 (1990).
28Epperson, J. E., Siegel, R. W., White, J. W., Klippert, T. E., Narayanasamy, A., Eastman, J. A., and Trouw, F., in Multicomponent Ultrafine Microstructures, edited by McCandlish, L. E., Kear, B. H., Polk, D. E., and Siegel, R. W. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 15.
29Eastman, J. A., Liao, Y. X., Narayanasamy, A., and Siegel, R. W., in Processing Science of Advanced Ceramics, edited by Aksay, LA., McVay, G. L., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 155, Pittsburgh, PA, 1989), p. 255.
30Handbook of Chemistry and Physics, 62nd ed., edited by Weast, R. C. (CRC Press, Boca Raton, FL, 1981), p. B2.
31German, R. M., Powder Metallurgy Science (Metal Powder Industries Federation, 1984), p. 113.
32Fischmeister, H. F., Artz, E., and Olsson, L. R., Powder Met. 4, 179 (1978).
33Gutmanas, E. Y., Rabinkin, A., and Roitberg, M., Scripta Metall. 13, 11 (1979).
34Warren, B. E., X-ray Diffraction (Addison-Wesley, Reading, MA, 1969), p. 251.
35Schwartz, L. H. and Cohen, J. B., Diffraction from Materials, 2nd ed. (Springer-Verlag, Berlin, 1987), p. 372.
36Guinier, A., X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies (W. H. Freeman and Co., San Francisco, CA, 1970), p. 121.
37Nandi, R. K., Kuo, H. K., Schlosberg, W., Wissler, G., Cohen, J. B., and Crist, B., J. Appl. Cryst. 17, 22 (1984).
38Wunderlich, W., Ishida, I., and Maurer, R., Scripta Met. et Mater. 24, 403 (1990).
39Keijser, R. de, Mittemeijer, E. J., and Rozendaal, H. C. F., J. Appl. Cryst. 16, 309 (1983).
40Nieman, G. W. and Weertman, J. R., Proc. of the Morris E. Fine symp., Detroit (1990), edited by Liaw, P. K.et al. (The Minerals, Metals and Materials Society, Warrendale, PA, 1991), p. 243.
41Long, N. J., Marzke, R. F., McKelvy, M., and Glaunsinger, W. S., Ultramicroscopy 20, 15 (1986).
42Easterling, K. E. and Thölén, A. R., Powder Met. 16, 112 (1973).
43Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. 65, 305 (1989).
44Tabor, D., The Hardness of Metals (Oxford University Press, London, 1951).
45Meyers, M. A. and Chawla, K. K., Mechanical Metallurgy Principles and Applications (Prentice-Hall Inc., Englewood Cliffs, NJ, 1964), p. 600.
46Pharr, G. M. and Oliver, W. C., J. Mater. Res. 4, 94 (1989).
47Hansen, N. and Ralph, B., Acta Metall. 30, 411 (1982).
48Hort, E., Diploma Thesis, Universitat des Saarlandes, Saarbr¨cken (1986).
49Metals Handbook Desk Edition, edited by Boyer, H. B. and Gall, T. L., 7–2 (1985).
50Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials, 2nd ed. (John Wiley and Sons, New York, 1983), p. 17.
51Weertman, J. and Weertman, J. R., in Physical Metallurgy, Part II, 3rd ed., edited by Cahn, R. W. and Haasen, P. (North Holland, Amsterdam, 1983), p. 1259.
52Hirth, J. P., Metall. Trans. 3, 3047 (1972).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed