Skip to main content

Mechanical performance and fracture behavior of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass

  • Q.J. Chen (a1), J. Shen (a2), D.L. Zhang (a3), H.B. Fan (a2) and J.F. Sun (a2)...

The mechanical properties of a new Fe41Co7Cr15Mo14Y2C15B6 bulk glassy alloy were studied by impact bending, compression, and hardness tests carried out at room temperature. The compressive fracture strength, elastic strain to fracture, Young’s modulus and Vickers hardness were measured to be 3.5 GPa, 1.5%, 265 GPa, and 1253 kg mm−2, respectively. The fracture mode of the glassy alloy under uniaxial compression is different from those of other bulk metallic glasses in that this fracture mode causes the samples to be broken, in an exploding manner, into a large number of micrometer-scale pieces. The fracture mechanisms of this bulk glassy alloy under bending and uniaxial compression are discussed based on the observation of the fracture surfaces. Vickers indentation tests indicate that the structure of the glassy ingot may be inhomogeneous.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1Zhang, W. and Inoue, A.: Cu-based bulk glass formation in the Cu–Zr–Ga alloy system and their mechanical properties. Mater. Trans. 45, 532 (2004).
2Wesseling, P., Nieh, T.G., Wang, W.H., and Lewandowski, J.J.: Preliminary assessment of flow, notch toughness, and high temperature behavior of Cu60Zr20Hf10Ti10 bulk metallic glass. Scripta Mater. 51, 151 (2004).
3Calin, M., Echert, J., and Schultz, L.: Improved mechanical behavior of Cu–Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scripta Mater. 63, 653 (2003).
4Zhang, Z.F., Echert, J., and Schultz, L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003).
5Gilbert, C.J., Ritchie, R.O., and Johnson, W.L.: Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Appl. Phys. Lett. 71, 476 (1997).
6Zhang, Z.F., Echert, J., and Schultz, L.: Tensile and fatigue fracture mechanisms of a Zr-based bulk metallic glass. J. Mater. Res. 18, 456 (2003).
7Ma, C.L. and Inoue, A.: Deformation and fracture behaviors of Pd–Cu–Ni–P glassy alloys. Mater. Trans. 43, 3266 (2002).
8Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A., and Higashi, K.: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002).
9Ponnambalam, V., Poon, S.J., and Shiflet, G.J.: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 (2004).
10Lu, Z.P., Liu, C.T., Thompson, J.R., and Porter, W.D.: Structure amorphous steels. Phys. Rev. Lett. 92 245503-1 (2004).
11Shen, J., Chen, Q.J., Sun, J.F., Fan, H.B., and Wang, G.: Exceptionally high glass-forming ability of FeCoCrMoCBY alloys. Appl. Phys. Lett. 86 151907-1 (2005).
12Chen, Q.J., Fan, H.B., Ye, L., Ringer, S., Sun, J.F., Shen, J., and McCartney, D.G.: Enhanced glass forming ability of Fe–Co–Zr– Mo–W–B alloys with Ni addition. Mater. Sci. Eng., A 402, 188 (2005).
13Inoue, A., Shen, B.L., Yavari, A.R., and Greer, A.L.: Mechanical properties of Fe-based bulk glassy alloys in Fe–B–Si–Nb and Fe–Ga–P–C–B–Si systems. J. Mater. Res. 18, 1487 (2003).
14Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94 205501-1 (2005).
15Schroers, J. and Johnson, W.L.: Ductile bulk metallic glasses. Phys. Rev. Lett. 93 255506-1 (2004).
16Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K.: High-strength Cu-based bulk glassy alloys in CuZrTi and CuHfTi ternary systems. Acta Mater. 49, 2645 (2001).
17Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y., and Lewandowski, J.J.: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).
18Guo, F.Q., Poon, P.J., and Shiflet, G.J.: Metallic glass ingots based on yttrium. Appl. Phys. Lett. 83, 2575 (2003).
19Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).
20Stoica, M., Echert, J., Roth, S., Zhang, Z.F., Schultz, L., and Wang, W.H.: Mechanical behavior of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glass. Intermetallics 13, 764 (2005).
21Wole, S.: Mechanical Properties of Engineered Material (Marcel Dekker New York, 2002), pp. 389, 391.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed