Skip to main content
×
×
Home

Mechanical properties of highly porous alumina foams

  • Benedikt Simon Michael Seeber (a1), Urs Thomas Gonzenbach (a1) and Ludwig Julius Gauckler (a1)
Abstract

The mechanical properties of porous ceramics are greatly influenced by their microstructure. Therefore, mechanical behavior of highly porous ceramics is different from that of dense ceramics. In this work, we evaluate different mechanical testing methods such as static compression, Brazilian disc test and 3-point bending on their suitability for comparison of highly porous ceramic materials. It is shown that 3-point bending is more suitable than static compression or Brazilian disc testing, as the material exhibits no critical crack propagation under compressive loading. With 3-point bending tests, a quantitative comparison of the mechanical properties of foams with different microstructures and porosities is possible. Under cyclic compression the foams exhibit a very high degree of crack tolerance in combination with preservation of their structural integrity even at high strains of 10%.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: ben.seeber@mat.ethz.ch
References
Hide All
1.Pyzik, A., Ziebarth, R., Han, C., and Yang, K.: High-porosity acicular mullite ceramics for multifunctional diesel particulate filters. Int. J. Appl. Ceram. Technol. 8(5), 10591066 (2011).
2.Blome, J.C.: Molten metal filter. U.S. Patent No 4265659, May 5, 1981.
3.Studart, A.R., Gonzenbach, U.T., Tervoort, E., and Gauckler, L.J.: Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 89(6), 17711789 (2006).
4.Schwartzwalder, K. and Somers, A.V.: Method of making porous ceramic articles. U.S. Patent No 3090094, 1963.
5.Schlichting, K.W., Padture, N.P., and Klemens, P.G.: Thermal conductivity of dense and porous yttria-stabilized zirconia. J. Mater. Sci. 36(12), 30033010 (2001).
6.Gonzenbach, U.T., Studart, A.R., Tervoort, E., and Gauckler, L.J.: Macroporous ceramics from particle-stabilized wet foams. J. Am. Ceram. Soc. 90(1), 1622 (2007).
7.Gibson, L.J. and Ashby, M.F.: Cellular Solids Structure and Properties (Cambridge University Press, Cambridge, UK, 1997).
8.Dam, C.Q., Brezny, R., and Green, D.J.: Compressive behavior and deformation-mode map of an open cell alumina. J. Mater. Res. 5(1), 163171 (1990).
9.Brezny, R. and Green, D.J.: The effect of cell-size on the mechanical-behavior of cellular materials. Acta Metall. Mater. 38(12), 25172526 (1990).
10.ASTM C1161: Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature. Standard (2002).
11.ASTM C1674: Standard Test Method for Flexural Strength of Advanced Ceramics with Engineered Porosity (Honeycomb Cellular Channels) at Ambient Temperatures. Standard (2011).
12.ASTM C1424: Standard Test Method for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature. Standard (2010).
13.ASTM C1326: Standard Test Method for Knoop Indentation Hardness of Advanced Ceramics. Standard (2008).
14.ASTM C1327: Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics. Standard (2008).
15.Borger, A., Supancic, P., and Danzer, R.: The ball on three balls test for strength testing of brittle discs: Stress distribution in the disc. J. Eur. Ceram. Soc. 22(9–10), 14251436 (2002).
16.Danzer, R., Supancic, P., and Harrer, W.: Biaxial tensile strength test for brittle rectangular plates. J. Ceram. Soc. Jpn. 114(1335), 10541060 (2006).
17.Fessler, H. and Fricker, D.C.: A theoretical analysis of the ring-on-ring loading disk test. J. Am. Ceram. Soc. 67(9), 582588 (1984).
18.Fessler, H. and Fricker, D.C.: Multiaxial strength tests for brittle materials. J. Strain Anal. Eng. Des. 19(3), 197208 (1984).
19.Rasch, C. and Kollenberg, W.: A modified “Brazilian” disk test - an indirect method to determine the tensile strength of ceramics. 48. Internationales Feuerfest-Kolloquium. (2005).
20.Gonzenbach, U.T., Studart, A.R., Tervoort, E., and Gauckler, L.J.: Ultrastable particle-stabilized foams. Angew. Chem. Int. Ed. 45(21), 35263530 (2006).
21.Gonzenbach, U.T., Studart, A.R., Tervoort, E., and Gauckler, L.J.: Stabilization of foams with inorganic colloidal particles. Langmuir 22(26), 1098310988 (2006).
22.Gonzenbach, U.T., Studart, A.R., Steinlin, D., Tervoort, E., and Gauckler, L.J.: Processing of particle-stabilized wet foams into porous ceramics. J. Am. Ceram. Soc. 90(11), 34073414 (2007).
23.Gonzenbach, U.T., Studart, A.R., Tervoort, E., and Gauckler, L.J.: Tailoring the microstructure of particle-stabilized wet foams. Langmuir 23(3), 10251032 (2007).
24.Seeber, B.S.M., Gonzenbach, U.T., Ebneter, U., and Gauckler, L.J.: Microstructural analysis of highly porous alumina foams, to be submitted.
25.Colombo, P., Arcaro, A., Francesconi, A., Pavarin, D., Rondini, D., and Debei, S.: Effect of hypervelocity impact on microcellular ceramic foams from a preceramic polymer. Adv. Eng. Mater. 5(11), 802805 (2003).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed