Skip to main content Accessibility help

Mechanical properties of two-dimensional materials and heterostructures

  • Kai Liu (a1) and Junqiao Wu (a2)


Mechanical properties are of fundamental importance in materials science and engineering, and have been playing a great role in various materials applications in the human history. Measurements of mechanical properties of 2-dimensional (2D) materials, however, are particularly challenging. Although various types of 2D materials have been intensively explored in recent years, the investigation of their mechanical properties lags much behind that of other properties, leading to lots of open questions and challenges in this research field. In this review, we first introduce the nanoindentation technique with atomic force microscopy to measure the elastic properties of graphene and 2D transition metal dichalcogenides. Then we review the effect of defects on mechanical properties of 2D materials, including studies on naturally defective chemical-vapor-deposited and intentionally defective 2D materials. Lastly, we introduce a nano-electromechanical device, resonators, built on the basis of the excellent mechanical properties of 2D materials.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mechanical properties of two-dimensional materials and heterostructures
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mechanical properties of two-dimensional materials and heterostructures
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mechanical properties of two-dimensional materials and heterostructures
      Available formats


Corresponding author

a) Address all correspondence to these authors. e-mail:
b) e-mail:


Hide All
1. Treacy, M.M.J., Ebbesen, T.W., and Gibson, J.M.: Exceptionally high young's modulus observed for individual carbon nanotubes. Nature 381(6584), 678 (1996).
2. Wong, E.W., Sheehan, P.E., and Lieber, C.M.: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971 (1997).
3. Lee, C., Wei, X.D., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385 (2008).
4. Tian, Y.J., Xu, B., Yu, D.L., Ma, Y.M., Wang, Y.B., Jiang, Y.B., Hu, W.T., Tang, C.C., Gao, Y.F., Luo, K., Zhao, Z.S., Wang, L.M., Wen, B., He, J.L., and Liu, Z.Y.: Ultrahard nanotwinned cubic boron nitride. Nature 493(7432), 385 (2013).
5. Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., and Morkoc, H.: A comprehensive review of zno materials and devices. J. Appl. Phys. 98(4), 103 (2005).
6. Wu, J.Q.: When group-iii nitrides go infrared: New properties and perspectives. J. Appl. Phys. 106(1), 011101 (2009).
7. Sun, Y.G. and Rogers, J.A.: Inorganic semiconductors for flexible electronics. Adv. Mater. 19(15), 1897 (2007).
8. Rogers, J.A., Someya, T., and Huang, Y.G.: Materials and mechanics for stretchable electronics. Science 327(5973), 1603 (2010).
9. Kim, D.H., Lu, N.S., Ma, R., Kim, Y.S., Kim, R.H., Wang, S.D., Wu, J., Won, S.M., Tao, H., Islam, A., Yu, K.J., Kim, T.I., Chowdhury, R., Ying, M., Xu, L.Z., Li, M., Chung, H.J., Keum, H., McCormick, M., Liu, P., Zhang, Y.W., Omenetto, F.G., Huang, Y.G., Coleman, T., and Rogers, J.A.: Epidermal electronics. Science 333(6044), 838 (2011).
10. Kroto, H.W., Heath, J.R., Obrien, S.C., Curl, R.F., and Smalley, R.E.: C-60-buckminsterfullerene. Nature 318(6042), 162 (1985).
11. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56 (1991).
12. Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933 (1996).
13. Dai, H.J.: Carbon nanotubes: Synthesis, integration, and properties. Accounts Chem. Res. 35(12), 1035 (2002).
14. Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., and Yan, Y.Q.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15(5), 353 (2003).
15. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004).
16. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10451 (2005).
17. Butler, S.Z., Hollen, S.M., Cao, L.Y., Cui, Y., Gupta, J.A., Gutierrez, H.R., Heinz, T.F., Hong, S.S., Huang, J.X., Ismach, A.F., Johnston-Halperin, E., Kuno, M., Plashnitsa, V.V., Robinson, R.D., Ruoff, R.S., Salahuddin, S., Shan, J., Shi, L., Spencer, M.G., Terrones, M., Windl, W., and Goldberger, J.E.: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898 (2013).
18. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197 (2005).
19. Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F.: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 4 (2010).
20. Splendiani, A., Sun, L., Zhang, Y.B., Li, T.S., Kim, J., Chim, C.Y., Galli, G., and Wang, F.: Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10(4), 1271 (2010).
21. Zhang, Y.B., Tan, Y.W., Stormer, H.L., and Kim, P.: Experimental observation of the quantum hall effect and berry's phase in graphene. Nature 438(7065), 201 (2005).
22. Liu, M., Yin, X.B., Ulin-Avila, E., Geng, B.S., Zentgraf, T., Ju, L., Wang, F., and Zhang, X.: A graphene-based broadband optical modulator. Nature 474(7349), 64 (2011).
23. Ju, L., Geng, B.S., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X.G., Zettl, A., Shen, Y.R., and Wang, F.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6(10), 630 (2011).
24. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147 (2011).
25. Xiao, D., Liu, G.B., Feng, W.X., Xu, X.D., and Yao, W.: Coupled spin and valley physics in monolayers of MoS2 and other group-vi dichalcogenides. Phys. Rev. Lett. 108(19), 5 (2012).
26. Mak, K.F., He, K.L., Lee, C., Lee, G.H., Hone, J., Heinz, T.F., and Shan, J.: Tightly bound trions in monolayer MoS2 . Nat. Mater. 12(3), 207 (2013).
27. Ye, Z.L., Cao, T., O'Brien, K., Zhu, H.Y., Yin, X.B., Wang, Y., Louie, S.G., and Zhang, X.: Probing excitonic dark states in single-layer tungsten disulphide. Nature 513(7517), 214 (2014).
28. Kim, J., Hong, X.P., Jin, C.H., Shi, S.F., Chang, C.Y.S., Chiu, M.H., Li, L.J., and Wang, F.: Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346(6214), 1205 (2014).
29. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., and Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637 (2000).
30. Han, X.D., Zheng, K., Zhang, Y.F., Zhang, X.N., Zhang, Z., and Wang, Z.L.: Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19(16), 2112 (2007).
31. Zhu, Y., Xu, F., Qin, Q.Q., Fung, W.Y., and Lu, W.: Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 9(11), 3934 (2009).
32. Wan, K.T., Guo, S., and Dillard, D.A.: A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films 425(1–2), 150 (2003).
33. Komaragiri, U., Begley, M.R., and Simmonds, J.G.: The mechanical response of freestanding circular elastic films under point and pressure loads. J. Appl. Mech. 72(2), 203 (2005).
34. Blakslee, O.L.: Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41(8), 3373 (1970).
35. Zhao, H., Min, K., and Aluru, N.R.: Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 9(8), 3012 (2009).
36. Van Lier, G., Van Alsenoy, C., Van Doren, V., and Geerlings, P.: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem. Phys. Lett. 326(1–2), 181 (2000).
37. Liu, F., Ming, P.M., and Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B. 76(6), 7 (2007).
38. Bhatia, N.M. and Nachbar, W.: Finite indentation of elastic-perfectly plastic membranes by a spherical indenter. Int. J. NonLinear Mech. 3(3), 307 (1968).
39. Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu, Y., Park, J., McEuen, P.L., and Muller, D.A.: Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469(7330), 389 (2011).
40. Dettori, R., Cadelano, E., and Colombo, L.: Elastic fields and moduli in defected graphene. J. Phys.: Condens. Matter 24(10), 10 (2012).
41. Jing, N.N., Xue, Q.Z., Ling, C.C., Shan, M.X., Zhang, T., Zhou, X.Y., and Jiao, Z.Y.: Effect of defects on Young's modulus of graphene sheets: A molecular dynamics simulation. RSC Adv. 2(24), 9124 (2012).
42. Grantab, R., Shenoy, V.B., and Ruoff, R.S.: Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330(6006), 946 (2010).
43. Wei, J., Wu, J.T., Yin, H.Q., Shi, X.H., Yang, R.G., and Dresselhaus, M.: The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat. Mater. 11(9), 759 (2012).
44. Warner, J.H., Margine, E.R., Mukai, M., Robertson, A.W., Giustino, F., and Kirkland, A.I.: Dislocation-driven deformations in graphene. Science 337(6091), 209 (2012).
45. Li, X.S., Cai, W.W., An, J.H., Kim, S., Nah, J., Yang, D.X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., and Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312 (2009).
46. Reina, A., Jia, X.T., Ho, J., Nezich, D., Son, H.B., Bulovic, V., Dresselhaus, M.S., and Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30 (2009).
47. Lee, G.H., Cooper, R.C., An, S.J., Lee, S., van der Zande, A., Petrone, N., Hammerherg, A.G., Lee, C., Crawford, B., Oliver, W., Kysar, J.W., and Hone, J.: High-strength chemical-vapor deposited graphene and grain boundaries. Science 340(6136), 1073 (2013).
48. Tsen, A.W., Brown, L., Levendorf, M.P., Ghahari, F., Huang, P.Y., Havener, R.W., Ruiz-Vargas, C.S., Muller, D.A., Kim, P., and Park, J.: Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336(6085), 1143 (2012).
49. Yu, Q.K., Jauregui, L.A., Wu, W., Colby, R., Tian, J.F., Su, Z.H., Cao, H.L., Liu, Z.H., Pandey, D., Wei, D.G., Chung, T.F., Peng, P., Guisinger, N.P., Stach, E.A., Bao, J.M., Pei, S.S., and Chen, Y.P.: Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10(6), 443 (2011).
50. Kim, K., Lee, Z., Regan, W., Kisielowski, C., Crommie, M.F., and Zettl, A.: Grain boundary mapping in polycrystalline graphene. ACS Nano 5(3), 2142 (2011).
51. Ruiz-Vargas, C.S., Zhuang, H.L.L., Huang, P.Y., van der Zande, A.M., Garg, S., McEuen, P.L., Muller, D.A., Hennig, R.G., and Park, J.: Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 11(6), 2259 (2011).
52. Lin, Q.Y., Jing, G., Zhou, Y.B., Wang, Y.F., Meng, J., Bie, Y.Q., Yu, D.P., and Liao, Z.M.: Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition. ACS Nano 7(2), 1171 (2013).
53. Zandiatashbar, A., Lee, G.H., An, S.J., Lee, S., Mathew, N., Terrones, M., Hayashi, T., Picu, C.R., Hone, J., and Koratkar, N.: Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014).
54. Lopez-Polin, G., Gomez-Navarro, C., Parente, V., Guinea, F., Katsnelson, M.I., Perez-Murano, F., and Gomez-Herrero, J.: Increasing the elastic modulus of graphene by controlled defect creation. Nat. Phys. 11(1), 26 (2015).
55. Lucchese, M.M., Stavale, F., Ferreira, E.H.M., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A., and Jorio, A.: Quantifying ion-induced defects and raman relaxation length in graphene. Carbon 48(5), 1592 (2010).
56. Cancado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S., and Ferrari, A.C.: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8), 3190 (2011).
57. Zhu, Y.W., Murali, S., Cai, W.W., Li, X.S., Suk, J.W., Potts, J.R., and Ruoff, R.S.: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22(35), 3906 (2010).
58. Liu, K., Hsin, C-L., Fu, D., Suh, J., Tongay, S., Chen, M., Sun, Y., Yan, A., Park, J., Yu, K.M., Guo, W., Zettl, A., Zheng, H., Chrzan, D.C., and Wu, J.: Self-passivation of defects: Effects of high-energy particle irradiation on elastic modulus of multilayer graphene. Adv. Mater. (2015), doi: 10.1002/adma.201501752.
59. Geim, A.K.: Graphene: Status and prospects. Science 324(5934), 1530 (2009).
60. Geim, A.K. and Grigorieva, I.V.: van der Waals heterostructures. Nature 499(7459), 419 (2013).
61. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., and Kis, A.: Ultrasensitive photodetectors based on monolayer MoS2 . Nat. Nanotechnol. 8(7), 497 (2013).
62. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnol. 7(11), 699 (2012).
63. He, Q.Y., Zeng, Z.Y., Yin, Z.Y., Li, H., Wu, S.X., Huang, X., and Zhang, H.: Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8(19), 2994 (2012).
64. Pu, J., Yomogida, Y., Liu, K.K., Li, L.J., Iwasa, Y., and Takenobu, T.: Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12(8), 4013 (2012).
65. Chang, H.Y., Yang, S.X., Lee, J.H., Tao, L., Hwang, W.S., Jena, D., Lu, N.S., and Akinwande, D.: High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7(6), 5446 (2013).
66. Akinwande, D., Petrone, N., and Hone, J.: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 12 (2014).
67. Bertolazzi, S., Brivio, J., and Kis, A.: Stretching and breaking of ultrathin MoS2 . ACS Nano 5(12), 9703 (2011).
68. Castellanos-Gomez, A., Poot, M., Steele, G.A., van der Zant, H.S.J., Agrait, N., and Rubio-Bollinger, G.: Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24(6), 772 (2012).
69. Feldman, J.L.: Elastic-constants of 2h-MoS2 and 2h-NbSe2 extracted from measured dispersion curves and linear compressibilities. J. Phys. Chem. Solids 37(12), 1141 (1976).
70. Lee, Y.H., Zhang, X.Q., Zhang, W.J., Chang, M.T., Lin, C.T., Chang, K.D., Yu, Y.C., Wang, J.T.W., Chang, C.S., Li, L.J., and Lin, T.W.: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320 (2012).
71. Liu, K.K., Zhang, W.J., Lee, Y.H., Lin, Y.C., Chang, M.T., Su, C., Chang, C.S., Li, H., Shi, Y.M., Zhang, H., Lai, C.S., and Li, L.J.: Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538 (2012).
72. Najmaei, S., Liu, Z., Zhou, W., Zou, X.L., Shi, G., Lei, S.D., Yakobson, B.I., Idrobo, J.C., Ajayan, P.M., and Lou, J.: Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754 (2013).
73. van der Zande, A.M., Huang, P.Y., Chenet, D.A., Berkelbach, T.C., You, Y.M., Lee, G.H., Heinz, T.F., Reichman, D.R., Muller, D.A., and Hone, J.C.: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12(6), 554 (2013).
74. Kang, K., Xie, S.E., Huang, L.J., Han, Y.M., Huang, P.Y., Mak, K.F., Kim, C.J., Muller, D., and Park, J.: High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656 (2015).
75. Liu, K., Yan, Q.M., Chen, M., Fan, W., Sun, Y.H., Suh, J., Fu, D.Y., Lee, S., Zhou, J., Tongay, S., Ji, J., Neaton, J.B., and Wu, J.Q.: Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 14(9), 5097 (2014).
76. Filippi, C., Singh, D.J., and Umrigar, C.J.: All-electron local-density and generalized-gradient calculations of the structural-properties of semiconductors. Phys. Rev. B. 50(20), 14947 (1994).
77. Kang, J., Tongay, S., Zhou, J., Li, J.B., and Wu, J.Q.: Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102(1), 4 (2013).
78. Yu, W.J., Li, Z., Zhou, H.L., Chen, Y., Wang, Y., Huang, Y., and Duan, X.F.: Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12(3), 246 (2013).
79. Yu, W.J., Liu, Y., Zhou, H.L., Yin, A.X., Li, Z., Huang, Y., and Duan, X.F.: Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8(12), 952 (2013).
80. Britnell, L., Ribeiro, R.M., Eckmann, A., Jalil, R., Belle, B.D., Mishchenko, A., Kim, Y.J., Gorbachev, R.V., Georgiou, T., Morozov, S.V., Grigorenko, A.N., Geim, A.K., Casiraghi, C., Castro Neto, A.H., and Novoselov, K.S.: Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311 (2013).
81. Hunt, B., Sanchez-Yamagishi, J.D., Young, A.F., Yankowitz, M., LeRoy, B.J., Watanabe, K., Taniguchi, T., Moon, P., Koshino, M., Jarillo-Herrero, P., and Ashoori, R.C.: Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 340(6139), 1427 (2013).
82. Tongay, S., Fan, W., Kang, J., Park, J., Koldemir, U., Suh, J., Narang, D.S., Liu, K., Ji, J., Li, J.B., Sinclair, R., and Wu, J.Q.: Tuning interlayer coupling in large-area heterostructures with cvd-grown MoS2 and WS2 monolayers. Nano Lett. 14(6), 3185 (2014).
83. Hong, X.P., Kim, J., Shi, S.F., Zhang, Y., Jin, C.H., Sun, Y.H., Tongay, S., Wu, J.Q., Zhang, Y.F., and Wang, F.: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9(9), 682 (2014).
84. Gong, Y.J., Lin, J.H., Wang, X.L., Shi, G., Lei, S.D., Lin, Z., Zou, X.L., Ye, G.L., Vajtai, R., Yakobson, B.I., Terrones, H., Terrones, M., Tay, B.K., Lou, J., Pantelides, S.T., Liu, Z., Zhou, W., and Ajayan, P.M.: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135 (2014).
85. Huang, C.M., Wu, S.F., Sanchez, A.M., Peters, J.J.P., Beanland, R., Ross, J.S., Rivera, P., Yao, W., Cobden, D.H., and Xu, X.D.: Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13(12), 1096 (2014).
86. Liu, K.H., Zhang, L.M., Cao, T., Jin, C.H., Qiu, D.A., Zhou, Q., Zettl, A., Yang, P.D., Louie, S.G., and Wang, F.: Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 6 (2014).
87. Tan, P.H., Han, W.P., Zhao, W.J., Wu, Z.H., Chang, K., Wang, H., Wang, Y.F., Bonini, N., Marzari, N., Pugno, N., Savini, G., Lombardo, A., and Ferrari, A.C.: The shear mode of multilayer graphene. Nat. Mater. 11(4), 294 (2012).
88. Wu, J.B., Zhang, X., Ijas, M., Han, W.P., Qiao, X.F., Li, X.L., Jiang, D.S., Ferrari, A.C., and Tan, P.H.: Resonant raman spectroscopy of twisted multilayer graphene. Nat. Commun. 5, 8 (2014).
89. Koren, E., Lortscher, E., Rawlings, C., Knoll, A.W., and Duerig, U.: Adhesion and friction in mesoscopic graphite contacts. Science 348(6235), 679 (2015).
90. Craighead, H.G.: Nanoelectromechanical systems. Science 290(5496), 1532 (2000).
91. Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., and McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315(5811), 490 (2007).
92. Robinson, J.T., Zalalutdinov, M., Baldwin, J.W., Snow, E.S., Wei, Z.Q., Sheehan, P., and Houston, B.H.: Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett. 8(10), 3441 (2008).
93. Chen, C.Y., Rosenblatt, S., Bolotin, K.I., Kalb, W., Kim, P., Kymissis, I., Stormer, H.L., Heinz, T.F., and Hone, J.: Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4(12), 861 (2009).
94. Robinson, J.T., Zalalutdinov, M.K., Junkermeier, C.E., Culbertson, J.C., Reinecke, T.L., Stine, R., Sheehan, P.E., Houston, B.H., and Snow, E.S.: Structural transformations in chemically modified graphene. Solid State Commun. 152(21), 1990 (2012).
95. Eichler, A., Moser, J., Chaste, J., Zdrojek, M., Wilson-Rae, I., and Bachtold, A.: Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 6(6), 339 (2011).
96. Castellanos-Gomez, A., van Leeuwen, R., Buscema, M., van der Zant, H.S.J., Steele, G.A., and Venstra, W.J.: Single-layer MoS2 mechanical resonators. Adv. Mater. 25(46), 6719 (2013).
97. Lee, J., Wang, Z.H., He, K.L., Shan, J., and Feng, P.X.L.: High frequency MoS2 nanomechanical resonators. ACS Nano 7(7), 6086 (2013).
98. Li, L.K., Yu, Y.J., Ye, G.J., Ge, Q.Q., Ou, X.D., Wu, H., Feng, D.L., Chen, X.H., and Zhang, Y.B.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372 (2014).


Related content

Powered by UNSILO

Mechanical properties of two-dimensional materials and heterostructures

  • Kai Liu (a1) and Junqiao Wu (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.