Skip to main content Accessibility help
×
Home

Mechanical stresses at the cathode–electrolyte interface in lithium-ion batteries

  • Sangwook Kim (a1) and Hsiao-Ying Shadow Huang (a1)

Abstract

Experimental studies have shown capacity loss and impedance rise on the surfaces of cathode particles during (dis)charging in lithium-ion batteries. However, there are surprisingly few studies focusing on the cathode–electrolyte interface. The current study uses multiphysics finite element models to understand fluid–structure interactions in a half-cell battery system. Effects of C-rate, particle sizes, lithiation, and phase transformation of the cathode at the interface are investigated. Results demonstrate that doubling the particle size results in larger available lithium intercalation areas, giving rise to increased tension 1.40 times and compression 1.82 times at the interface. Moreover, higher C-rate with high lithium-ion concentration gradient results in higher mechanical stresses at the interface. These coupling factors are strongly related to the experimentally observed battery degradation. Our simulations demonstrate that both electrode and electrolyte have pronounced effects when investigating mechanical stresses at the electrode–electrolyte interface.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: hshuang@ncsu.edu

References

Hide All
1. Chiang, Y-M.: Building a better battery. Science 330, 1485 (2010).
2. Kang, B. and Ceder, G.: Battery materials for ultrafast charging and discharging. Nature 458, 190 (2009).
3. Aurbach, D., Markovsky, B., Salitra, G., Markevich, E., Talyossef, Y., Koltypin, M., Nazar, L., Ellis, B., and Kovacheva, D.: Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. In IBA—HBC 2006 Selected Papers from the International Battery Association & Hawaii Battery Conference 2006, Vol. 165, Waikoloa, Hawaii, USA, 2007; p. 491.
4. Aurbach, D., Talyosef, Y., Markovsky, B., Markevich, E., Zinigrad, E., Asraf, L., Gnanaraj, J.S., and Kim, H.J.: Design of electrolyte solutions for Li and Li-ion batteries: A review. Electrochim. Acta 50, 247 (2004).
5. Ju, H., Wu, J., and Xu, Y.H.: Revisiting the electrochemical impedance behaviour of the LiFePO4/C cathode. J. Chem. Sci. 125, 687 (2013).
6. Strobridge, F.C., Orvananos, B., Croft, M., Yu, H.C., Robert, R., Liu, H., Zhong, Z., Connolley, T., Drakopoulos, M., Thornton, K., and Grey, C.P.: Mapping the inhomogeneous electrochemical reaction through porous LiFePO4-electrodes in a standard coin cell battery. Chem. Mater. 27, 2374 (2015).
7. Deshpande, R., Cheng, Y.T., Verbrugge, M.W., and Timmons, A.: Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle. J. Electrochem. Soc. 158, A718 (2011).
8. ChiuHuang, C.K. and Huang, H.Y.S.: Stress evolution on the phase boundary in LiFePO4 particles. J. Electrochem. Soc. 160, A2184 (2013).
9. Stamps, M., Eischen, J.W., and Huang, H.-Y.S.: Particle- and Crack-Size Dependency of Lithium-ion Battery Materials LiFePO4 . AIMS Mater. Sci. 3(1), 190 (2016).
10. Huang, H.-Y.S. and Wang, Y.-X.: Dislocation Based Stress Developments in Lithium-Ion Batteries. J. Electrochem. Soc. 159(6), A815 (2012).
11. Cheng, Y-T. and Verbrugge, M.W.: Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J. Electrochem. Soc. 157, A508 (2010).
12. Cheng, Y.T. and Verbrugge, M.W.: The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. 104, 083521 (2008).
13. Cheng, Y.T. and Verbrugge, M.W.: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190, 453 (2009).
14. Deshpande, R., Cheng, Y.T., and Verbrugge, M.W.: Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195, 5081 (2010).
15. Deshpande, R., Qi, Y., and Cheng, Y.T.: Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J. Electrochem. Soc. 157, A967 (2010).
16. Deshpande, R., Verbrugge, M., Cheng, Y.T., Wang, J., and Liu, P.: Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. J. Electrochem. Soc. 159, A1730 (2012).
17. Park, J., Lu, W., and Sastry, A.M.: Numerical simulation of stress evolution in lithium manganese dioxide particles due to coupled phase transition and intercalation. J. Electrochem. Soc. 158, A201 (2011).
18. Park, M., Zhang, X., Chung, M., Less, G.B., and Sastry, A.M.: A review of conduction phenomena in Li-ion batteries. J. Power Sources 195, 7904 (2010).
19. Zhang, X., Sastry, A.M., and Shyy, W.: Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles. J. Electrochem. Soc. 155, A542 (2008).
20. Zhang, X., Shyy, W., and Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910 (2007).
21. Zhang, Z.: High Voltage Electrolyte for Lithium Batteries (Argonne National Laboratory Presentation, Washington, DC, 2012).
22. Christensen, J. and Newman, J.: A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153, A1019 (2006).
23. Christensen, J. and Newman, J.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293 (2006).
24. Zhu, M., Park, J., and Sastry, A.M.: Fracture analysis of the cathode in Li-ion batteries: A simulation study. J. Electrochem. Soc. 159, A492 (2012).
25. Renganathan, S., Sikha, G., Santhanagopalan, S., and White, R.E.: Theoretical analysis of stresses in a lithium ion cell. J. Electrochem. Soc. 157, A155 (2010).
26. Renganathan, S. and White, R.E.: Semianalytical method of solution for solid phase diffusion in lithium ion battery electrodes: Variable diffusion coefficient. J. Power Sources 196, 442 (2011).
27. Chen, G., Song, X., and Richardson, T.J.: Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid-State Lett. 9, A295 (2006).
28. Nishimura, S-i., Kobayashi, G., Ohoyama, K., Kanno, R., Yashima, M., and Yamada, A.: Experimental visualization of lithium diffusion in Li x FePO4 . Nat. Mater. 7, 707 (2008).
29. Yamada, A., Koizumi, H., Nishimura, S-i., Sonoyama, N., Kanno, R., Yonemura, M., Nakamura, T., and Kobayashi, Y.: Room-temperature miscibility gap in Li x FePO4 . Nat. Mater. 5, 360 (2006).
30. Yamada, A., Koizumi, H., Sonoyama, N., and Kanno, R.: Phase change in Li x FePO4 . Electrochem. Solid-State Lett. 8, A409 (2005).
31. ChiuHuang, C-K. and Huang, H-Y.S.: A diffusion model in a two-phase interfacial zone for nanoscale lithium-ion battery materials. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition (ASME International, Houston, 2012); p. 1231.
32. ChiuHuang, C-K., Zhou, C., and Shadow Huang, H-Y.: In situ imaging of lithium-ion batteries via the secondary ion mass spectrometry. J. Nanotechnol. Eng. Med. 5, 021002 (2014).
33. Srinivasan, V. and Newman, J.: Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc. 151, A1517 (2004).
34. ChiuHuang, C.K. and Huang, H-Y.S.: Critical lithiation for C-rate dependent mechanical stresses in LiFePO4 . J. Solid State Electrochem. 19, 2245 (2015).
35. Sauvage, F., Baudrin, E., Morcrette, M., and Tarascon, J.M.: Pulsed laser deposition and electrochemical properties of LiFePO4 thin films. Electrochem. Solid-State Lett. 7, A15 (2004).
36. Brunetti, G., Robert, D., Bayle-Guillemaud, P., Rouviere, J.L., Rauch, E.F., Martin, J.F., Colin, J.F., Bertin, F., and Cayron, C.: Confirmation of the Domino-Cascade model by LiFePO4/FePO4 precession electron diffraction. Chem. Mater. 23, 4515 (2011).
37. Christensen, J.: Modeling diffusion-induced stress in Li-ion cells with porous electrodes. J. Electrochem. Soc. 157, A366 (2010).
38. Li, Y.Y., El Gabaly, F., Ferguson, T.R., Smith, R.B., Bartelt, N.C., Sugar, J.D., Fenton, K.R., Cogswell, D.A., Kilcoyne, A.L.D., Tyliszczak, T., Bazant, M.Z., and Chueh, W.C.: Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nat. Mater. 13, 1149 (2014).
39. Valoen, L.O. and Reimers, J.N.: Transport properties of LiPF6-based Li-ion battery electrolytes. J. Electrochem. Soc. 152, A882 (2005).
40. Nazri, G.A. and Pistoia, G., eds.: Lithium Batteries: Science and Technologies (Springer, New York, 2009); pp. 509529.
41. Nagpure, S.C., Downing, R.G., Bhushan, B., Babu, S.S., and Cao, L.: Neutron depth profiling technique for studying aging in Li-ion batteries. Electrochim. Acta 56, 4735 (2011).
42. Hayamizu, K.: Temperature dependence of self-diffusion coefficients of ions and solvents in ethylene carbonate, propylene carbonate, and diethyl carbonate single solutions and ethylene carbonate plus diethyl carbonate binary solutions of LiPF6 studied by NMR. J. Chem. Eng. Data 57, 2012 (2012).
43. Churikov, A.V., Ivanishchev, A.V., Ivanishcheva, I.A., Sycheva, V.O., Khasanova, N.R., and Antipov, E.V.: Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim. Acta 55, 2939 (2010).
44. Liu, Q., He, H., Li, Z.F., Liu, Y.D., Ren, Y., Lu, W.Q., Lu, J., Stach, E.A., and Xie, J.: Rate-dependent, Li-ion insertion/deinsertion behavior of LiFePO4 cathodes in commercial 18650 LiFePO4 cells. ACS Appl. Mater. Interfaces 6, 3282 (2014).
45. Maxisch, T. and Ceder, G.: Elastic properties of olivine Li x FePO4 from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 73, 174112 (2006).
46. Tang, M., Belak, J.F., and Dorr, M.R.: Anisotropic phase boundary morphology in nanoscale olivine electrode particles. J. Phys. Chem. C 115, 4922 (2011).
47. Laffont, L., Delacourt, C., Gibot, P., Wu, M.Y., Kooyman, P., Masquelier, C., and Tarascon, J.M.: Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 18, 5520 (2006).
48. Guduru, A., Northrop, P.W.C., Jain, S., Crothers, A.C., Marchant, T.R., and Subramanian, V.R.: Analytical solution for electrolyte concentration distribution in lithium-ion batteries. J. Appl. Electrochem. 42, 189 (2012).
49. Wang, Y.G., Wang, Y.R., Hosono, E.J., Wang, K.X., and Zhou, H.S.: The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem., Int. Ed. 47, 7461 (2008).
50. Zhang, X.D., Hou, Y.K., He, W., Yang, G.H., Cui, J.J., Liu, S.K., Song, X., and Huang, Z.: Fabricating high performance lithium-ion batteries using bionanotechnology. Nanoscale 7, 3356 (2015).
51. Li, J.C., Zhang, Q.L., Xiao, X.C., Cheng, Y.T., Liang, C.D., and Dudney, N.J.: Unravelling the impact of reaction paths on mechanical degradation of intercalation cathodes for lithium-ion batteries. J. Am. Chem. Soc. 137, 13732 (2015).
52. Lim, C., Yan, B., Yin, L.L., and Zhu, L.K.: Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT. Electrochim. Acta 75, 279 (2012).
53. Kobayashi, G., Nishimura, S.I., Park, M.S., Kanno, R., Yashima, M., Ida, T., and Yamada, A.: Isolation of solid solution phases in size-controlled Li x FePO4 at room temperature. Adv. Funct. Mater. 19, 395 (2009).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed