Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T06:43:53.560Z Has data issue: false hasContentIssue false

Mechanochemical synthesis of functionalized silicon nanoparticles with terminal chlorine groups

Published online by Cambridge University Press:  30 March 2011

Steffen Hallmann
Affiliation:
Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
Mark J. Fink
Affiliation:
Department of Chemistry, Tulane University, New Orleans, Louisiana 70118
Brian S. Mitchell*
Affiliation:
Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
*
a)Address all correspondence to this author. e-mail: brian@tulane.edu
Get access

Abstract

A facile and efficient, one step method using high-energy ball milling (HEBM) to produce chloroalkyl-functionalized silicon nanoparticles is described. HEBM causes silicon wafers to fracture and exposes reactive silicon surfaces. Nanometer-sized, functionalized particles with alkyl-linked chloro groups are synthesized by milling the silicon precursor in presence of an ω-chloroalkyne in either hexene or hexyne. This process allows tuning of the concentration of the exposed, alkyl-linked chloro groups, simply by varying the relative amounts of the coreactants. The silicon nanoparticles formed serve as a starting point for a wide variety of chemical reactions, which may be used to alter the surface properties of the functionalized nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pillai, S., Catchpole, K., Trupke, T., Zhang, G., Zhao, J., and Green, M.: Enhanced emission from Si-based light-emitting diodes using surface plasmons. Appl. Phys. Lett. 88, 161102 (2006).CrossRefGoogle Scholar
2.Raniero, L., Zhang, S., Aqyas, H., Ferreira, I., Igreja, R., Fortunato, E., and Martins, R.: Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHz. Thin Solid Films 487, 170 (2005).CrossRefGoogle Scholar
3.Boyraz, O. and Jalili, B.: Demonstration of directly modulated silicon Raman laser. Opt. Express 13, 796 (2005).CrossRefGoogle ScholarPubMed
4.Beard, M.C., Knutsen, K.P., Yu, P., Luther, J.M., Song, Q., Metzger, W.K., Ellingson, R.J., and Nozik, A.J.: Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7, 2506 (2007).CrossRefGoogle ScholarPubMed
5.Fojtik, A., Valenta, J., Peant, I., Kalal, M., and Fiala, P.: On the road to silicon nanoparticle laser. J. Mater. Process. Technol. 181, 88 (2007).CrossRefGoogle Scholar
6.Belomoin, G., Therrien, J., Smith, A., Rao, S., Twesten, R., Chiab, S., Nayfeh, M.H., Wagner, L., and Mitas, L.: Magic family of discretly sized ultrabright Si nanoparticles, in Nanophase and Nanocomposite Materials IV, edited by Komarneni, S., Parker, J.C., Vaia, R.A., Lu, G.Q., and Matsushita, J.-I. (Mater. Res. Soc. Symp. Proc. 703, Warrendale, PA, 2002) V11.14, p. 475.Google Scholar
7.Wang, L., Reipa, V., and Blasic, J.: Silicon nanoparticles as a luminescent label to DNA. Bioconjugate Chem. 15, 409 (2004).CrossRefGoogle ScholarPubMed
8.Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., and Webb, W.W.: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434 (2003).CrossRefGoogle ScholarPubMed
9.Rosso-Vasic, M., Spruijt, E., Popovi, Z., Overgaag, K., van Lagen, B., Grandidier, B., Vanmaekelbergh, D., Dominguez-Gutiérrez, D., De Cola, L., and Zuilhof, H.: Synthesis and cytotoxicity of silicon nanoparticles with covalently attached organic monolayers. J. Mater. Chem. 19, 5926 (2009).CrossRefGoogle Scholar
10.English, D.S., Pell, L.E., Yu, Z., Barbara, P.F., and Korgel, B.A.: Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrystal quantum dots. Nano Lett. 2(7), 681 (2002).CrossRefGoogle Scholar
11.Proot, J.P., Delrue, C., and Allan, G.: Electronic structure and optical properties of silicon crystallites: Application to porous silicon. Appl. Phys. Lett. 61, 1948 (1992).CrossRefGoogle Scholar
12.Shirahata, N., Hasegawa, T., Sakka, Y., and Tsuruoka, T.: Size-tuneable UV-luminescent silicon nanocrystals. Small 6, 915 (2010).CrossRefGoogle Scholar
13.Nayfeh, M.H., Rogozhina, E.V., and Mitas, L.: Synthesis, Funtionalization and Surface Treatment of Nanoparticles (American Scientific Publisher, Stevenson Ranch, CA, 2003) p. 173.Google Scholar
14.Nirmal, M. and Brus, L.: Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32, 407 (1999).CrossRefGoogle Scholar
15.Cohen, R., Zenou, N., Cahen, D., and Yitzchaik, S.: Molecular electronic tuning of Si surfaces. Chem. Phys. Lett. 279, 270 (1997).CrossRefGoogle Scholar
16.Warner, J.H., Hoshino, A., Shiohara, A., Yamamoto, K., and Tilley, R.D.: The synthesis of silicon and germanium quantum dots for biomedical applications. Proc. SPIE 6096, 6096071 (2006).Google Scholar
17.Mangolini, L., Thimsen, E., and Kortshagen, U.: High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655 (2005).CrossRefGoogle ScholarPubMed
18.Ding, Z., Quinn, B.M., Haram, S.K., Pell, L.E., Korgel, B.A., and Bard, A.J.: Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296, 1293 (2002).CrossRefGoogle ScholarPubMed
19.Hua, F., Swihart, M.T., and Ruckenstein, E.: Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation. Langmuir 21, 6054 (2005).CrossRefGoogle ScholarPubMed
20.Hessel, C.M., Henderson, E.J., and Veinot, J.G.C.: Hydrogen silsesquioxane: A molecular precursor for nanocrsytalline Si–SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater. 18, 6139 (2006).CrossRefGoogle Scholar
21.Sacarlescu, L. and Simionescu, M.: Polymer route for silicon quantum dots. J. Optoelectron. Adv. Mater. 10, 649 (2008).Google Scholar
22.Hua, F., Erogbogbo, F., Swihart, M.T., and Ruckenstein, E.: Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilyation followed by oxidation. Langmuir 22, 4363 (2006).CrossRefGoogle Scholar
23.Baldwin, R.K., Pettigrew, K.A., Garno, J.C., Power, P.P., Liu, G., and Kauzlarich, S.M.: Room temperature solution synthesis of alkyl-capped tetrahedral shaped silicon nanocrystals. J. Am. Chem. Soc. 124, 1150 (2002).CrossRefGoogle ScholarPubMed
24.Zou, J., Baldwin, R.K., Pettigrew, K.A., and Kauzlarich, S.M.: Solution synthesis of ultrastable luminescent siloxane-coated silicon nanoparticles. Nano Lett. 4, 1181 (2004).CrossRefGoogle Scholar
25.Zou, J. and Kauzlarich, S.M.: Functionalization of silicon nanoparticles via silanization: Alkyl, halide and ester. J. Cluster Sci. 19, 34 (2008).CrossRefGoogle Scholar
26.Zhang, X., Neiner, D., Wang, S., Louie, A.Y., and Kauzlarich, S.M.: A new solution route to hydrogen-terminated silicon nanoparticles: Synthesis, functionalization and water stability. Nanotechnology 18, 1 (2007).Google ScholarPubMed
27.Choi, J., Wang, N.S., and Reipa, V.: Photoassisted tuning of silicon nanocrystal photoluminescence. Langmuir 25, 7097 (2009).CrossRefGoogle Scholar
28.Choi, J., Tung, S., Wang, N.S., and Reipa, V.: Small-angle neutron scattering measurement of silicon nanoparticle size. Nanotechnology 19, 0857151 (2008).CrossRefGoogle ScholarPubMed
29.Choi, J., Wang, N.S., and Reipa, V.: Photoassisted tuning of silicon nanocrystal photoluminescence. Langmuir 23, 3388 (2007).CrossRefGoogle ScholarPubMed
30.Belomoin, G., Therrien, J., Smith, A., Rao, S., Twesten, R., Chaieb, S., Nayfeh, M., and Wagner, L.: Effect of thickness variation in high efficiency InGaN/GaN light emitting diodes. Appl. Phys. Lett. 80, 841 (2002).CrossRefGoogle Scholar
31.Carlisle, J.A., Dongol, M., Germanenko, I.N., Phitawalla, Y.B., and El-Shall, M.S.: Evidence for changes in the electronic and photoluminescence properties of surface-oxidized silicon nanocrystals induced by shrinking the size of the silicon core. Chem. Phys. Lett. 326, 335 (2000).CrossRefGoogle Scholar
32.Carlisle, M., Germanenko, I.N., Phitawalla, Y.B., and El-Shall, M.S.: Morphology, photoluminescence and electronic structure in oxidized silicon nanoclusters. J. Electron Spectrosc. Relat. Phenom. 229, 114 (2001).Google Scholar
33.Linford, M.R., Fenter, P., Eisenberger, P.M., and Chidsey, C.E.D.: Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J. Am. Chem. Soc. 117, 3145 (1995).CrossRefGoogle Scholar
34.Heintz, A.S., Fink, M.J., and Mitchell, B.S.: Mechanochemical synthesis of blue luminescent alkyl/alkenyl-passivated silicon nanoparticles. Adv. Mater. 19, 3984 (2007).CrossRefGoogle Scholar
35.Maurice, D.R. and Courtney, T.H.: The physics of mechanical alloying: A first report. Metall. Trans A 21, 289 (1990).CrossRefGoogle Scholar
36.Yang, L., Lua, Y-Y., Lee, M.V., and Linford, M.R.: Chemomechanical functionalization and pattering of silicon. Acc. Chem. Res. 38, 933 (2005).CrossRefGoogle Scholar
37.Liu, Q. and Hoffmann, R.: The bare and acetylene chemisorbed Si(001) surface, and the mechanism of acetylene chemisorption. J. Am. Chem. Soc. 117, 4082 (1995).CrossRefGoogle Scholar
38.Liu, H. and Hamers, R.J.: Stereoselectivity in molecule-surface reactions: Adsorption of ethylene on the silicon(001) surface. J. Am. Chem. Soc. 119, 7593 (1997).CrossRefGoogle Scholar
39.McMurry, J.: Organic Chemistry, 5th ed. (Brooks/Cole, Belmont, CA, 2000).Google Scholar
40.Bhattcharjee, S., de Haan, L.H.J., Evers, N.M., Jiang, X., Marcelis, A.T.M., Zuilhof, H., Rietjens, I.M.C.M., and Alink, G.M.: Role of surface charge and oxidative stress in the cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 celss. Part. Fibre Toxicol. 7, 25 (2010).CrossRefGoogle Scholar
41.Heintz, A.S., Fink, M.J., and Mitchell, B.S.: Silicon nanoparticles with chemically tailored surfaces. Appl. Organomet. Chem. 24, 236 (2010).CrossRefGoogle Scholar
42.Yang, C.-S., Bley, R.A., Kauzlarich, S.M., Lee, H.W.H., and Delgado, G.R.: Synthesis of alkyl-terminated silicon nanoclusters by a solution route. J. Am. Chem. Soc. 121, 5191 (1999).CrossRefGoogle Scholar
43.Smith, A.L.: Infrared spectra-structure for organosilicon compounds. Spectrochim. Acta 16, 87 (1960).CrossRefGoogle Scholar
44.Mawhinney, D.B., Glass, J.A. Jr., and Yates, J.T. Jr.: FTIR study of the oxidation of porous silicon. J. Phys. Chem. B 101(7), 1202 (1997).CrossRefGoogle Scholar
45.Jung, D.H., Cho, S.Y., Peck, D.H., Shin, D.R., and Kim, J.S.: Performance evaluation of a nafion/silicon oxide membrane for direct methanol fuel cell. J. Power Sources 106, 173 (2002).CrossRefGoogle Scholar
46.Canaria, C.A., Lees, I.N., Wun, A.W., Miskelly, G.M., and Sailor, M.J.: Characterization of the carbon-silicon stretch in methylated porous silicon–observation of an anomalous isotope in the FTIR spectrum. Inorg. Chem. Commun. 5, 560 (2002).CrossRefGoogle Scholar
47.Wolkin, M.V., Jorne, L., and Fauchet, P.M.: Electronic states and luminescence in porous silicon quantum dots: The role of oxygen. Phys. Rev. Lett. 82, 197 (1999).CrossRefGoogle Scholar
48.Thiel, P.A.: The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 7, 211 (1987).CrossRefGoogle Scholar
49.Trznadel, M., Pron, A., Zagorska, M., Chrzaszcz, R., and Pielichowski, J.: Effect of molecular weight on spectroscopic and spectroelectrochemical properties of regioregular poly (3-hexylthiophene). Macromolecules 31, 5051 (1998).CrossRefGoogle ScholarPubMed
50.Wang, X., Zhang, R.Q., and Lee, S.T.: Unusual size dependence of the optical emission band gap in small hydrogenated silicon nanoparticles. Appl. Phys. Lett. 90, 123116 (2007).CrossRefGoogle Scholar
51.Patrone, L., Nelson, D., Safarov, V.I., Sentis, M., and Marine, W.: Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation. J. Appl. Phys. 87, 3829 (2000).CrossRefGoogle Scholar
52.Wang, Y.Q., Wang, Y.G., Cao, L., and Cao, Z.X.: High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride. Appl. Phys. Lett. 83, 3474 (2003).CrossRefGoogle Scholar
53.Rosso-Vasic, M., Spruijt, E., van Lagen, B., De Cola, L., and Zuilhof, H.: Alkyl-functionalized oxide-free silicon nanoparticles: Synthesis and optical properties. Small 10, 1835 (2008).CrossRefGoogle Scholar
54.Zhang, X., Neiner, D., Wang, S., Louie, A.Y., and Kauzlarich, S.M.: A new solution route to hydrogen-terminated silicon nanoparticles: Synthesis, functionalization and water stability. Nanotechnology 18, 095601 (2007).CrossRefGoogle ScholarPubMed
55.He, Y., Kang, Z.-H., Li, Q.-S., Tsang, C.H.A., Fan, C-H., and Lee, S-T.: Ultra stable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew. Chem. 121, 134 (2009).CrossRefGoogle Scholar
56.Kang, Z., Liu, Y., Tsang, C.H.A., Ma, D.D.D., Fan, X., Wong, N.-B., and Lee, S.-T.: Water-soluable silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater. 21, 661 (2009).CrossRefGoogle Scholar
57.Lin, S.-W. and Chen, D-H.: Synthesis of water-soluable blue photoluminescent silicon nanocrystals with oxide surface passivation. Small 5, 72 (2009).CrossRefGoogle Scholar
58.Shirahata, N., Linford, M.R., Furumi, S., Pei, L., Sakka, Y., Gates, R.J., and Aplund, M.C.: Laser-derived one-pot synthesis of silicon nanocrystals terminated with organic monolyers. Chem. Commun. (Camb.) 31, 4684 (2009).CrossRefGoogle Scholar