Skip to main content
    • Aa
    • Aa

Mesoporous silica beads encapsulated with functionalized palladium nanocrystallites: Novel catalyst for selective hydrogen evolution

  • Prem Chandra Pandey (a1), Shubhangi Shukla (a1) and Yashashwa Pandey (a1)

2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane (EETMS)/3-glycidoxypropyltrimethoxysilane (GPTMS) mediated, in situ synthesis of functional palladium (Pd) nanocomposites over the graphene oxide (GO) surface is reported. The prepared nanocomposites viz, Pd/EETMS, Pd/GPTMS, Pd/GO/EETMS, and Pd/GO/GPTMS, are encapsulated into mesoporous (2–10 nm) silica-alginate beads to primarily serve the development of cost-effective catalyst for on-board generation of hydrogen. Major findings involve: (i) the synthesis of porous silica alginate beads, with the controlled pore sizes (2–10 nm) as a function of concentration of alkoxysilanes, (ii) onboard release of hydrogen from the decomposition of hydrazine, which is evaluated as: (1) time-dependent disappearance of the N–N bond stretching band at 1069 cm−1 based on the FTIR spectroscopy, (2) volumetric estimation of the equimolar hydrogen using methylene blue (MB); (3) catalytic reduction of p-nitroaniline (PNA). The decomposition of high concentration of hydrazine is made possible using very low concentration of palladium. On calcination the efficiency of catalysts found to enhance further. The noteworthy finding is probing the hydrogen evolution using FTIR spectroscopy. Hydrogen selectivity of ∼100% is obtained from the most efficient catalyst (Pd/GO/EETMS-623 K).

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Xiaobo Chen

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

X. Li , J. Yu , J. Low , Y. Fang , J. Xiaoc , and X. Chen : Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 24852534 (2015).

X. Chen , S. Shen , L. Guo , and S.S. Mao : Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 65036570 (2010).

X. Chen , C. Li , M. Grätzel , R. Kosteckid , and S.S. Mao : Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41, 79097937 (2012).

S.I. Orimo , Y. Nakamori , R.E. Jennifer , A. Zuttel , and C.M. Jensen : Complex hydrides for hydrogen storage. Chem. Rev. 107, 41114132 (2007).

M. Yadav and Q. Xu : Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 5, 96989725 (2012).

M. Zheng , R. Cheng , X. Chen , N. Li , L. Li , X. Wang , and T. Zhang : A novel approach for CO-free H2 production via catalytic decomposition of hydrazine. Int. J. Hydrogen Energy 30, 10811089 (2005).

S.K. Singh , A.K. Singh , K. Aranishi , and Q. Xu : Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage. J. Am. Chem. Soc. 133, 1963819641 (2011).

S.K. Singh , X.B. Zhang , and Q. Xu : Room-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage. J. Am. Chem. Soc. 131, 98949895 (2009).

L.J. Liu , U. Burghaus , F. Besenbacher , and Z.L. Wang : Preparation and characterization of nanomaterials for sustainable energy production. ACS Nano 4, 55175526 (2010).

C.E. Bunker and M.J. Smith : Nanoparticles for hydrogen generation. J. Mater. Chem. 21, 1217312180 (2011).

K.V. Manukyan , A. Cros , S. Rouvimov , J. Miller , A.S. Mukasyan , and E.E. Wolf : Low temperature decomposition of hydrous hydrazine over FeNi/Cu nanoparticles. Appl. Catal., A 476, 4753 (2014).

S.K. Singh and Q. Xu : Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage. J. Am. Chem. Soc. 131, 1803218033 (2009).

J. Wang , X-B. Zhang , Z-L. Wang , L-M. Wang , and Y. Zhang : Rhodium–nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy Environ. Sci. 5, 68856888 (2012).

Y. Choi , H.S. Bae , E. Seo , S. Jang , K.H. Park , and B.S. Kim : Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes. J. Mater. Chem. 21, 1543115436 (2011).

A.N. Bezbaruah , S. Krajangpan , B.J. Chisholm , E. Khan , and J.J. Elorza Bermudez : Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J. Hazard. Mater. 166, 13391343 (2009).

H. Kim , H.J. Hong , J. Jung , S.H. Kim , and J.W. Yang : Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J. Hazard. Mater. 176, 10381043 (2010).

Y. Kuang , D. Jianhua , R. Zhou , Z. Chen , M. Megharaj , and R. Naidu : Calcium alginate encapsulated Ni/Fe nanoparticles beads for simultaneous removal of Cu (II) and monochlorobenzene. J. Colloid Interface Sci. 447, 8591 (2015).

J. Klein , J. Stock , and K.D. Vorlop : Pore size and properties of spherical Ca-alginate biocatalysts. Eur. J. Appl. Microbiol. Biotechnol. 18, 8691 (1983).

P.C. Pandey and R. Singh : Tetrahydrofuran hydroperoxide and 3-aminopropyl trimethoxysilane mediated controlled synthesis of Pd, Pd–Au, Au–Pd nanoparticles: Role of palladium nanoparticles on the redox electrochemistry of ferrocene monocarboxylic acid. Electrochim. Acta 138, 163173 (2014).

P.C. Pandey and G. Pandey : One-pot two-step rapid synthesis of 3-aminopropyltrimethoxysilane-mediated highly catalytic Ag@(PdAu) trimetallic nanoparticles. Catal. Sci. Technol. 6, 39113917 (2016).

P.C. Pandey , S. Shukla , and Y. Pandey : 3-aminopropyltrimethoxysilane and grapheneoxide/reduced graphene oxide-induced generation of gold nanoparticles and their nanocomposites: Electrocatalytic and kinetic activity. RSC Adv. 6, 8054980556 (2016).

P.C. Pandey and G. Pandey : Synthesis of gold nanoparticles resistant to pH and salt for biomedical applications; functional activity of organic amine. J. Mater. Res. 31, 33133323 (2016).

T. Seo , R. Kurokawa , and B. Sato : A convenient method for determining the concentration of hydrogen in water: Use of methylene blue with colloidal platinum. Med. Gas Res. 2, 1 (2012). doi: 10.1186/2045-9912-2-1.

Z.D. Pozun , S.E. Rodenbusch , E. Keller , K. Tran , W. Tang , K.J. Stevenson , and G. Henkelman : A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J. Phys. Chem. C 117, 75987604 (2013).

D.J. Darensbourg , J.L. Rodgers , and C.C. Fang : The copolymerization of carbon dioxide and [2-(3,4-epoxycyclohexyl)ethyl]trimethoxysilane catalyzed by (salen)CrCl. Formation of a CO2 soluble polycarbonate. Inorg. Chem. 42, 44984500 (2003).

J.I. Paredes , S. Villar-Rodil , A. Martínez-Alonso , and J.M.D. Tascón : Graphene oxide dispersions in organic solvents. Langmuir 24, 1056010564 (2008).

D. Konios , M.M. Stylianakis , E. Stratakis , and E. Kymakis : Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108112 (2014).

A. Krittayavathananon , P. Srimuk , S. Luanwuthi , and M. Sawangphruk : Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: Effects of particle size and hydrodynamic diffusion. Anal. Chem. 86, 1227212278 (2014).

X. Zhang , J. Zhu , C.S. Tiwary , Z. Ma , H. Huang , J. Zhang , Z. Lu , W. Huang , and Y. Wu : Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS Appl. Mater. Interfaces 8, 1085810865 (2016).

K. Park , H.J. Yu , W.K. Chung , B.J. Kim , and S.H. Kim : Effect of heat-treatment on CdS and CdS/ZnS nanoparticles. J. Mater. Sci. 44, 43154320 (2009).

S. Wunder , F. Polzer , Y. Lu , Y. Mei , and M. Ballauff : Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 114, 88148820 (2010).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Pandey supplementary material
Figures S1-S5 and Table1

 Word (4.3 MB)
4.3 MB


Full text views

Total number of HTML views: 1
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 46 *
Loading metrics...

* Views captured on Cambridge Core between 15th June 2017 - 29th June 2017. This data will be updated every 24 hours.