Skip to main content
    • Aa
    • Aa

Mesoporous silica beads encapsulated with functionalized palladium nanocrystallites: Novel catalyst for selective hydrogen evolution

  • Prem Chandra Pandey (a1), Shubhangi Shukla (a1) and Yashashwa Pandey (a1)

2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane (EETMS)/3-glycidoxypropyltrimethoxysilane (GPTMS) mediated, in situ synthesis of functional palladium (Pd) nanocomposites over the graphene oxide (GO) surface is reported. The prepared nanocomposites viz, Pd/EETMS, Pd/GPTMS, Pd/GO/EETMS, and Pd/GO/GPTMS, are encapsulated into mesoporous (2–10 nm) silica-alginate beads to primarily serve the development of cost-effective catalyst for on-board generation of hydrogen. Major findings involve: (i) the synthesis of porous silica alginate beads, with the controlled pore sizes (2–10 nm) as a function of concentration of alkoxysilanes, (ii) onboard release of hydrogen from the decomposition of hydrazine, which is evaluated as: (1) time-dependent disappearance of the N–N bond stretching band at 1069 cm−1 based on the FTIR spectroscopy, (2) volumetric estimation of the equimolar hydrogen using methylene blue (MB); (3) catalytic reduction of p-nitroaniline (PNA). The decomposition of high concentration of hydrazine is made possible using very low concentration of palladium. On calcination the efficiency of catalysts found to enhance further. The noteworthy finding is probing the hydrogen evolution using FTIR spectroscopy. Hydrogen selectivity of ∼100% is obtained from the most efficient catalyst (Pd/GO/EETMS-623 K).

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Xiaobo Chen

Hide All
1. LiX., YuJ., LowJ., FangY., XiaocJ., and ChenX.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 24852534 (2015).
2. ChenX., ShenS., GuoL., and MaoS.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 65036570 (2010).
3. ChenX., LiC., GrätzelM., KosteckidR., and MaoS.S.: Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41, 79097937 (2012).
4. SinghS.K. and XuQ.: Nanocatalysts for hydrogen generation from hydrazine. Catal. Sci. Technol. 3, 18891900 (2013).
5. OrimoS.I., NakamoriY., JenniferR.E., ZuttelA., and JensenC.M.: Complex hydrides for hydrogen storage. Chem. Rev. 107, 41114132 (2007).
6. YadavM. and XuQ.: Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 5, 96989725 (2012).
7. ZhengM., ChengR., ChenX., LiN., LiL., WangX., and ZhangT.: A novel approach for CO-free H2 production via catalytic decomposition of hydrazine. Int. J. Hydrogen Energy 30, 10811089 (2005).
8. SinghS.K., SinghA.K., AranishiK., and XuQ.: Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage. J. Am. Chem. Soc. 133, 1963819641 (2011).
9. SinghS.K., ZhangX.B., and XuQ.: Room-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage. J. Am. Chem. Soc. 131, 98949895 (2009).
10. LiuL.J., BurghausU., BesenbacherF., and WangZ.L.: Preparation and characterization of nanomaterials for sustainable energy production. ACS Nano 4, 55175526 (2010).
11. BunkerC.E. and SmithM.J.: Nanoparticles for hydrogen generation. J. Mater. Chem. 21, 1217312180 (2011).
12. ManukyanK.V., CrosA., RouvimovS., MillerJ., MukasyanA.S., and WolfE.E.: Low temperature decomposition of hydrous hydrazine over FeNi/Cu nanoparticles. Appl. Catal., A 476, 4753 (2014).
13. OliaeeS.N., ZhangC., HwangS.Y., CheungH.M., and PengZ.: Hydrogen production via hydrazine decomposition on model platinum–nickel nanocatalyst with a single (111) facet. J. Phys. Chem. C 120, 97649772 (2016).
14. SinghS.K. and XuQ.: Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage. J. Am. Chem. Soc. 131, 1803218033 (2009).
15. WangJ., ZhangX-B., WangZ-L., WangL-M., and ZhangY.: Rhodium–nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy Environ. Sci. 5, 68856888 (2012).
16. YangX., ZhangX., MaY., HuangY., WangY., and ChenY.: Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 19, 27102714 (2009).
17. ChoiY., BaeH.S., SeoE., JangS., ParkK.H., and KimB.S.: Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes. J. Mater. Chem. 21, 1543115436 (2011).
18. KimY.K., HanS.W., and MinD.H.: Graphene oxide sheath on Ag nanoparticle/graphene hybrid films as an antioxidative coating and enhancer of surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 4, 65456551 (2012).
19. BezbaruahA.N., KrajangpanS., ChisholmB.J., KhanE., and Elorza BermudezJ.J.: Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J. Hazard. Mater. 166, 13391343 (2009).
20. KimH., HongH.J., JungJ., KimS.H., and YangJ.W.: Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J. Hazard. Mater. 176, 10381043 (2010).
21. PankongadisakP., RuktanonchaiU.R., SupapholP., and SuwantongO.: Preparation and characterization of silver nanoparticles-loaded calcium alginate beads embedded in gelatin scaffolds. AAPS PharmSciTech 15, 11051115 (2014).
22. KuangY., JianhuaD., ZhouR., ChenZ., MegharajM., and NaiduR.: Calcium alginate encapsulated Ni/Fe nanoparticles beads for simultaneous removal of Cu (II) and monochlorobenzene. J. Colloid Interface Sci. 447, 8591 (2015).
23. KleinJ., StockJ., and VorlopK.D.: Pore size and properties of spherical Ca-alginate biocatalysts. Eur. J. Appl. Microbiol. Biotechnol. 18, 8691 (1983).
24. BrunelD., CauvelA., RenzoF.D., FajulaF., FubiniB., OnidaB., and GarroneE.: Preferential grafting of alkoxysilane coupling agents on the hydrophobic portion of the surface of micelle-templated silica. New J. Chem. 24, 807813 (2000).
25. PandeyP.C. and SinghR.: Tetrahydrofuran hydroperoxide and 3-aminopropyl trimethoxysilane mediated controlled synthesis of Pd, Pd–Au, Au–Pd nanoparticles: Role of palladium nanoparticles on the redox electrochemistry of ferrocene monocarboxylic acid. Electrochim. Acta 138, 163173 (2014).
26. PandeyP.C. and PandeyG.: One-pot two-step rapid synthesis of 3-aminopropyltrimethoxysilane-mediated highly catalytic Ag@(PdAu) trimetallic nanoparticles. Catal. Sci. Technol. 6, 39113917 (2016).
27. PandeyP.C., ShuklaS., and PandeyY.: 3-aminopropyltrimethoxysilane and grapheneoxide/reduced graphene oxide-induced generation of gold nanoparticles and their nanocomposites: Electrocatalytic and kinetic activity. RSC Adv. 6, 8054980556 (2016).
28. PandeyP.C. and PandeyG.: Synthesis of gold nanoparticles resistant to pH and salt for biomedical applications; functional activity of organic amine. J. Mater. Res. 31, 33133323 (2016).
29. TafreshiS., RoldanabA., and Nora de LeeuwH.: Density functional theory calculations of the hydrazine decomposition mechanism on the planar and stepped Cu (111) surfaces. Phys. Chem. Chem. Phys. 17, 2153321546 (2015).
30. SeoT., KurokawaR., and SatoB.: A convenient method for determining the concentration of hydrogen in water: Use of methylene blue with colloidal platinum. Med. Gas Res. 2, 1 (2012). doi: 10.1186/2045-9912-2-1.
31. PozunZ.D., RodenbuschS.E., KellerE., TranK., TangW., StevensonK.J., and HenkelmanG.: A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J. Phys. Chem. C 117, 75987604 (2013).
32. GuS., WunderS., LuY., and BallauffM.: Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J. Phys. Chem. C 118, 1861818625 (2014).
33. ZhangR., LiuLu., LiY., WangW., LiR.: Electroxidation Kinetics of Hydrazine on Y-type Zeolite encapsulated Ni(II)(salen) Complex Supported on Graphite Modified Electrode. Int. J. Electrochem. Sci., 10, 23552369 (2015).
34. DarensbourgD.J., RodgersJ.L., and FangC.C.: The copolymerization of carbon dioxide and [2-(3,4-epoxycyclohexyl)ethyl]trimethoxysilane catalyzed by (salen)CrCl. Formation of a CO2 soluble polycarbonate. Inorg. Chem. 42, 44984500 (2003).
35. ParedesJ.I., Villar-RodilS., Martínez-AlonsoA., and TascónJ.M.D.: Graphene oxide dispersions in organic solvents. Langmuir 24, 1056010564 (2008).
36. KoniosD., StylianakisM.M., StratakisE., and KymakisE.: Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108112 (2014).
37. Pérez-LorenzoM.: Palladium nanoparticles as efficient catalysts for Suzuki cross-coupling reactions. J. Phys. Chem. Lett. 3, 167174 (2012).
38. KrittayavathananonA., SrimukP., LuanwuthiS., and SawangphrukM.: Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: Effects of particle size and hydrodynamic diffusion. Anal. Chem. 86, 1227212278 (2014).
39. ZhangX., ZhuJ., TiwaryC.S., MaZ., HuangH., ZhangJ., LuZ., HuangW., and WuY.: Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS Appl. Mater. Interfaces 8, 1085810865 (2016).
40. HuangY.X., XieJ.F., ZhangX., XiongL., and YuH.Q.: Reduced graphene oxide supported palladium nanoparticles via photoassisted citrate reduction for enhanced electrocatalytic activities. ACS Appl. Mater. Interfaces 6, 1579515801S (2014).
41. KocakC.C., AltınA., AslisenB., and KocakS.: Electrochemical preparation and characterization of gold and platinum nanoparticles modified poly(taurine) film electrode and its application to hydrazine determination. Int. J. Electrochem. Sci. 11, 233249 (2016).
42. ParkK., YuH.J., ChungW.K., KimB.J., and KimS.H.: Effect of heat-treatment on CdS and CdS/ZnS nanoparticles. J. Mater. Sci. 44, 43154320 (2009).
43. KurodaK., IshidaT., and HarutaM.: Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. J. Mol. Catal. 298, 711 (2009).
44. WunderS., PolzerF., LuY., MeiY., and BallauffM.: Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 114, 88148820 (2010).
45. KastnerC. and ThunemannA.F.: Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir 32, 73837391 (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Pandey supplementary material
Figures S1-S5 and Table1

 Word (4.3 MB)
4.3 MB


Full text views

Total number of HTML views: 1
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 176 *
Loading metrics...

* Views captured on Cambridge Core between 15th June 2017 - 20th October 2017. This data will be updated every 24 hours.