Skip to main content
×
Home
    • Aa
    • Aa

Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, self-folding, and fracture

  • Markus J. Buehler (a1)
Abstract

Using concepts of hierarchical multiscale modeling, we report development of a mesoscopic model for single-wall carbon nanotubes with parameters completely derived from full atomistic simulations. The parameters in the mesoscopic model are fit to reproduce elastic, fracture, and adhesion properties of carbon nanotubes, in this article demonstrated for (5,5) carbon nanotubes. The mesoscale model enables modeling of the dynamics of systems with hundreds of ultralong carbon nanotubes over time scales approaching microseconds. We apply our mesoscopic model to study self-assembly processes, including self-folding, bundle formation, as well as the response of bundles of carbon nanotubes to severe mechanical stimulation under compression, bending, and tension. Our results with mesoscale modeling corroborate earlier results, suggesting a novel self-folding mechanism, leading to creation of racket-shaped carbon nanotube structures, provided that the aspect ratio of the carbon nanotube is sufficiently large. We find that the persistence length of the (5,5) carbon nanotube is on the order of a few micrometers in the temperature regime from 300 to 1000 K.

Copyright
Corresponding author
a) Address all correspondence to this author.e-mail: mbuehler@MIT.EDU
References
Hide All
1.Iijima S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).
2.Moulton S.E., Minett A.I., Wallace G.G.: Carbon nanotube based electronic and electrochemical sensors. Sens. Lett. 3, 183 (2005).
3.Modi A., Koratkar N., Lass E., Wei B.Q., Ajayan P.M.: Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171 (2003).
4.Sazonova V., Yaish Y., Ustunel H., Roundy D., Arias T.A., McEuen P.L.: A tunable carbon nanotube electromechanical oscillator. Nature 431, 284 (2004).
5.Jiang H., Yu M.F., Liu B., Huang Y.: Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator. Phys. Rev. Lett. 93, 185501 (2004).
6.Huang J.Y., Chen S., Wang Z.Q., Kempa K., Wang Y.M., Jo S.H., Chen G., Dresselhaus M.S., Ren Z.F.: Superplastic carbon nanotubes—Conditions have been discovered that allow extensive deformation of rigid single-walled nanotubes. Nature 439, 281 (2006).
7.Zhang W.D., Yang F., Gu P.Y.: Carbon nanotubes grow to pillars. Nanotechnology 16, 2442 (2005).
8.Gao H., Kong Y., Cui D., Ozkan C.S.: Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 3, 471 (2003).
9.Guo X., Wang J.B., Zhang H.W.: Mechanical properties of single-walled carbon nanotubes based on higher order Cauchy– Born rule. Int. J. Solids Struct. 43, 1276 (2006).
10.Lu H., Zhang L.: Analysis of localized failure of single-wall carbon nanotubes. Comput. Mater. Sci. 35, 432 (2006).
11.Shi D.L., Feng X.Q., Jiang H.Q., Huang Y.Y., Hwang K.C.: Multiscale analysis of fracture of carbon nanotubes embedded in composites. Int. J. Fract. 134, 369 (2005).
12.Li C.Y., Ruoff R.S., Chou T.W.: Modeling of carbon nanotube clamping in tensile tests. Compos. Sci. Technol. 65, 2407 (2005).
13.Natsuki T., Endo M.: Stress simulation of carbon nanotubes in tension and compression. Carbon 42, 2147 (2004).
14.Qin L.C., Zhao X.L., Hirahara K., Miyamoto Y., Ando Y., Iijima S.: Materials science—The smallest carbon nanotube. Nature 408, 50 (2000).
15.Ajayan P.M., Iijima S.: Smallest carbon nanotube. Nature 358, 23 (1992).
16.Yakobson B.I., Brabec C.J., Bernholc J.: Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76, 2511 (1996).
17.Ozaki T., Iwasa Y., Mitani T.: Stiffness of single-walled carbon nanotubes under large strain. Phys. Rev. Lett. 84, 1712 (2000).
18.Dereli G., Ozdogan C.: Structural stability and energetics of single-walled carbon nanotubes under uniaxial strain. Phys. Rev. B 67, 035416 (2003).
19.Ru C.Q.: Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium. J. Mech. Phys. Solids 49, 1265 (2001).
20.Ni B., Sinnott S.B., Mikulski P.T., Harrison J.A.: Compression of carbon nanotubes filled with C-60, CH4, or Ne: Predictions from molecular dynamics simulations. Phys. Rev. Lett. 88, 205505 (2002).
21.Hod O., Rabani E., Baer R.: Carbon nanotube closed-ring structures. Phys. Rev. B 67, 195408 (2003).
22.Hertel T., Walkup R.E., Avouris P.: Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 58, 13870 (1998).
23.Ulbricht H., Moos G., Hertel T.: Interaction of C-60 with carbon nanotubes and graphite. Phys. Rev. Lett. 90, 095501 (2003).
24.Arroyo M., Belytschko T.: Continuum-mechanics modeling and simulation of carbon nanotubes. Meccanica 40, 455 (2005).
25.Jiang H., Huang Y., Hwang K.C.: A finite-temperature continuum theory based on interatomic potentials. J. Eng. Mater. Technol. Trans. ASME 127, 408 (2005).
26.Zhang P., Huang Y., Gao H., Hwang K.C.: Fracture nucleation in single-wall carbon nanotubes under tension: A continuum analysis incorporating interatomic potentials. J. Appl. Mech.—Trans. ASME 69, 454 (2002).
27.Yeak S.H., Ng T.Y., Liew K.M.: Multiscale modeling of carbon nanotubes under axial tension and compression. Phys. Rev. B 72, 165401 (2005).
28.Lu Q., Bhattacharya B.: Effect of randomly occurring Stone– Wales defects on mechanical properties of carbon nanotubes using atomistic simulation. Nanotechnol. 16, 555 (2005).
29.Pugno N.M., Ruoff R.S.: Quantized fracture mechanics. Philos. Mag. 84, 2829 (2004).
30.Marques M.A.L., Troiani H.E., Miki-Yoshida M., Jose-Yacaman M., Rubio A.: On the breaking of carbon nanotubes under tension. Nano Lett. 4, 811 (2004).
31.Zhou L.G., Shi S.Q.: Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage. Comput. Mater. Sci. 23, 166 (2002).
32.Molinero V., Goddard W.A.: Microscopic mechanism of water diffusion in glucose glasses. Phys. Rev. Lett. 95, 045701 (2005).
33.Lamm M.H., Chen T., Glotzer S.C.: Simulated assembly of nanostructured organic/inorganic networks. Nano Lett. 3, 989 (2003).
34.Underhill P.T., Doyle P.S.: On the coarse-graining of polymers into bead-spring chains. J. Non-Newtonian Fluid Mech. 122, 3 (2004).
35.Maiti A., Wescott J., Kung P.: Nanotube-polymer composites: Insights from Flory–Huggins theory and mesoscale simulations. Mol. Simul. 31, 143 (2005).
36.Barber A.H., Cohen S.R., Eitan A., Schadler L.S., Wagner H.D.: Fracture transitions at a carbon-nanotube/polymer interface. Adv. Mater. 18, 83 (2006).
37.Barth J.V., Costantini G., Kern K.: Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671 (2005).
38.Zhang M., Fang S.L., Zakhidov A.A., Lee S.B., Aliev A.E., Williams C.D., Atkinson K.R., Baughman R.H.: Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215 (2005).
39.Huang Y., Chiang C.Y., Lee S.K., Gao Y., Hu E.L., De Yoreo J., Belcher A.M.: Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett. 5, 1429 (2005).
40.Hazani M., Hennrich F., Kappes M., Naaman R., Peled D., Sidorov V., Shvarts D.: DNA-mediated self-assembly of carbon nanotube-based electronic devices. Chem. Phys. Lett. 391, 389 (2004).
41.Gu Q., Cheng C.D., Gonela R., Suryanarayanan S., Anabathula S., Dai K., Haynie D.T.: DNA nanowire fabrication. Nanotechnology 17 R14(2006).
42.Buehler M.J., Kong Y., Gao H.J.: Self-folding and unfolding of carbon nanotubes. J. Eng. Mater. Technol. 128, 3 (2006).
43.Buehler M.J., Kong Y., Gao H.J.: Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading. J. Eng. Mater. Technol. 126, 245 (2004).
44.Allen M.P., Tildesley D.J.: Computer Simulation of Liquids (Oxford University Press, New York, 1989).
45.Tersoff J.: Empirical interatomic potentials for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879 (1988).
46.Stillinger F., Weber T.A.: Computer-simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262 (1985).
47.Stadler J., Mikulla R., Trebin H-R.: IMD: A software package for molecular dynamics studies on parallel computers. Int. J. Mod. Phys. C. 8, 1131 (1997).
48.Roth J., Gahler F., Trebin H-R.: A molecular dynamics run with 5.180.116.000 particles. Int. J. Mod. Phys. C. 11, 317 (2000).
49.Tsai D.H.: Virial theorem and stress calculation in molecular-dynamics. J. Chem. Phys. 70, 1375 (1979).
50.Yang H.T., Chen J.W., Yang L.F., Dong J.M.: Oscillations of local density of states in defective carbon nanotubes. Phys. Rev. B 71, 085402 (2005).
51.Ding F.: Theoretical study of the stability of defects in single-walled carbon nanotubes as a function of their distance from the nanotube end. Phys. Rev. B 72, 245409 (2005).
52.Buehler M.J.: Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture and self-assembly. J. Mater. Res. 21(8), 1947(2006).
53.Buehler M.J., Gao H.: Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature 439, 307 (2006).
54.Buehler M.J., Abraham F.F., Gao H.: Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426, 141 (2003).
55.Mayo S.L., Olafson B.D., Goddard W.A.: Dreiding—A generic force-field for molecular simulations. J. Phys. Chem. 94, 8897 (1990).
56.Gao H.: A theory of local limiting speed in dynamic fracture. J. Mech. Phys. Solids. 44, 1453 (1996).
57.Plimpton S.: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1 (1995).
58.Buehler M.J., Duin A.C.T.v., Goddard W.A.: Multi-paradigm modeling of dynamical crack propagation in silicon using the ReaxFF reactive force field. Phys. Rev. Lett. 96, 095505 (2006).
59.Duin A.C.T.v., Dasgupta S., Lorant F., Goddard W.A.: ReaxFF: A reactive force field for hydrocarbons. J. Phys. Chem. A. 105, 9396 (2001).
60.Nielson K.D., Duin A.C.T.v., Oxgaard J., Deng W., Goddard W.A.: Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J. Phys. Chem. A 109, 49 (2005).
61.Humphrey W., Dalke A., Schulten K.: VMD: Visual molecular dynamics. J. Mol. Graphics 14, 33 (1996).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 96 *
Loading metrics...

Abstract views

Total abstract views: 206 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th October 2017. This data will be updated every 24 hours.