Skip to main content
×
Home

Micromechanical study on the deformation behavior of directionally solidified NiAl–Cr eutectic composites

  • Amritesh Kumar (a1), Charlotte Ensslen (a1), Antje Krüger (a1), Michael Klimenkov (a1), Oliver Kraft (a1) and Ruth Schwaiger (a1)...
Abstract
Abstract

The effect of Cr fibers on the deformation of directionally solidified NiAl–Cr eutectics, prepared at three different solidification speeds affecting the fiber diameter and fiber spacing, was studied at varying length scales using different micromechanical testing techniques. In situ tensile tests in a scanning electron microscope of individual Cr fibers showed high strength accompanied by ductile behavior. Comparative microcompression tests on single-phase NiAl pillars and NiAl pillars containing a single fiber showed that the pillars with the single fiber were marginally weaker than the single-phase pillars for similar pillar diameters. Composite pillars with multiple fibers exhibited an increase of 0.2% offset strength values with increasing solidification speed. Transmission electron microscopy of the composite pillars containing a single fiber after deformation revealed significant dislocation activity both in the fiber and the matrix. It is argued that the interface between the fiber and matrix acts as dislocation source promoting plastic deformation of the brittle NiAl matrix.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: ruth.schwaiger@kit.edu
Footnotes
Hide All

Contributing Editor: Yang-T. Cheng

Footnotes
References
Hide All
1. Darolia R.: NiAl alloys for high temperature structural applications. JOM 43, 44 (1991).
2. Miracle D.B.: The physical and mechanical properties of NiAl. Acta Metall. Mater. 41, 649 (1993).
3. Liu C.T. and Horton J.A. Jr.: Effect of refractory alloying additions on mechanical properties of near-stoichiometric NiAl. Mater. Sci. Eng., A 192–193, 170 (1995).
4. Frommeyer G. and Rablbauer R.: High temperature materials based on the intermetallic compound NiAl reinforced by refractory metals for advanced energy conversion technologies. Steel Res. Int. 79, 507 (2008).
5. Yang J-M.: The mechanical behavior of in-situ NiAl-refractory metal composites. JOM 49, 40 (1997).
6. Bei H. and George E.P.: Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy. Acta Mater. 53, 69 (2005).
7. Chen X.F., Johnson D.R., Noebe R.D., and Oliver B.F.: Deformation and fracture of a directionally solidified NiAl–28Cr–6Mo eutectic alloy. J. Mater. Res. 10, 1159 (1995).
8. Qi Y.H., Ma S.N., and Guo J.T.: Microstructure, and high temperature mechanical property of directionally solidified NiAl–Cr(Mo)–W/Nb alloy. Adv. Mater. Res. 299–300, 167 (2011).
9. Cline H.E. and Walter J.L.: The effect of alloy additions on the rod-plate transition in the eutectic NiAl–Cr. Metall. Trans. 1, 2907 (1970).
10. Walter J.L. and Cline H.E.: The effect of solidification rate on structure and high-temperature strength of the eutectic NiAl–Cr. Metall. Trans. 1, 1221 (1970).
11. Hu L., Hu W., Gottstein G., Bogner S., Hollad S., and Bührig-Polaczek A.: Investigation into microstructure and mechanical properties of NiAl–Mo composites produced by directional solidification. Mater. Sci. Eng., A 539, 211 (2012).
12. Bei H., Shim S., Pharr G.M., and George E.P.: Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).
13. Phani P.S., Johanns K.E., Duscher G., Gali A., George E.P., and Pharr G.M.: Scanning transmission electron microscope observations of defects in as-grown and pre-strained Mo alloy fibers. Acta Mater. 59, 2172 (2011).
14. Johanns K.E., Sedlmayr A., Sudharshan Phani P., Mönig R., Kraft O., George E.P., and Pharr G.M.: In-situ tensile testing of single-crystal molybdenum-alloy fibers with various dislocation densities in a scanning electron microscope. J. Mater. Res. 27, 508 (2012).
15. Oliver W.C. and Pharr G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
16. Oliver W.C. and Pharr G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
17. Greer J.R., Oliver W.C., and Nix W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).
18. Gianola D.S., Sedlmayr A., Mönig R., Volkert C.A., Major R.C., Cyrankowski E., Asif S.A.S., Warren O.L., and Kraft O.: In situ nanomechanical testing in focused ion beam and scanning electron microscopes. Rev. Sci. Instrum. 82, 063901 (2011).
19. Boles S.T., Sedlmayr A., Kraft O., and Mönig R.: In situ cycling and mechanical testing of silicon nanowire anodes for lithium-ion battery applications. Appl. Phys. Lett. 100, 243901 (2012).
20. Ensslen C., Brandl C., Richter G., Schwaiger R., and Kraft O.: Notch insensitive strength and ductility in gold nanowires. Acta Mater. 108, 317 (2016).
21. Eberl C., Gianola D.S., and Thompson R.: MATLAB file exchange. http://www.mathworks.com/matlabcentral/fileexchange/12413 (2006).
22. Frommeyer G., Rablbauer R., and Schäfer H.J.: Elastic properties of B2-ordered NiAl and NiAl-X (Cr, Mo, W) alloys. Intermetallics 18, 299 (2010).
23. Kraft O., Gruber P.A., Mönig R., and Weygand D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).
24. Senger J., Weygand D., Motz C., Gumbsch P., and Kraft O.: Aspect ratio and stochastic effects in the plasticity of uniformly loaded micrometer-sized specimens. Acta Mater. 59, 2937 (2011).
25. Mompiou F., Legros M., Sedlmayr A., Gianola D.S., Caillard D., and Kraft O.: Source-based strengthening of sub-micrometer Al fibers. Acta Mater. 60, 977 (2012).
26. Chisholm C., Bei H., Lowry M.B., Oh J., Syed Asif S.A., Warren O.L., Shan Z.W., George E.P., and Minor A.M.: Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Mater. 60, 2258 (2012).
27. Fei H., Abraham A., Chawla N., and Jiang H.: Evaluation of micro-pillar compression tests for accurate determination of elastic-plastic constitutive relations. J. Appl. Mech. 79, 061011 (2012).
28. Schwaiger R., Weber M., Moser B., Gumbsch P., and Kraft O.: Mechanical assessment of ultrafine-grained nickel by microcompression experiment and finite element simulation. J. Mater. Res. 27, 266 (2011).
29. Kiener D., Motz C., Rester M., Jenko M., and Dehm G.: FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng., A 459(1), 262 (2007).
30. Duesbery M.S. and Vitek V.: Plastic anisotropy in b.c.c. transition metals. Acta Mater. 46, 1481 (1998).
31. Cline H.E., Walter J.L., Koch E.F., and Osika L.M.: The variation of interface dislocation networks with lattice mismatch in eutectic alloys. Acta Metall. 19, 405 (1971).
32. Walter J.L., Cline H.E., and Koch E.F.: Interface dislocations in directionally solidified NiAl–Cr eutectic. Trans. Metall. Soc. AIME 245, 2073 (1969).
33. Misra A. and Gibala R.: Plasticity in multiphase intermetallics. Intermetallics 8, 1025 (2000).
34. Kwon J., Bowers M.L., Brandes M.C., McCreary V., Robertson I.M., Phani P.S., Bei H., Gao Y.F., Pharr G.M., George E.P., and Mills M.J.: Characterization of dislocation structures and deformation mechanisms in as-grown and deformed directionally solidified NiAl–Mo composites. Acta Mater. 89, 315 (2015).
35. Noebe R.D., Misra A., and Gibala R.: Plastic flow and fracture of B2 NiAl-based intermetallic alloys containing a ductile second phase. ISIJ Int. 31, 1172 (1991).
36. Bei H., Gao Y.F., Shim S., George E.P., and Pharr G.M.: Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys. Rev. B: Condens. Matter Mater. Phys. 77, 25 (2008).
37. Battaile C.C., Boyce B.L., Weinberger C.R., Prasad S.V., Michael J.R., and Clark B.G.: The hardness and strength of metal tribofilms: An apparent contradiction between nanoindentation and pillar compression. Acta Mater. 60, 17121720 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 26
Total number of PDF views: 83 *
Loading metrics...

Abstract views

Total abstract views: 314 *
Loading metrics...

* Views captured on Cambridge Core between 14th February 2017 - 12th December 2017. This data will be updated every 24 hours.