Skip to main content Accessibility help

Microscale deformation of (001) and (100) rutile single crystals under spherical nanoindentation

  • Sandip Basu (a1), Omar A. Elshrief (a2), Robert Coward (a2), Babak Anasori (a2) and Michel W. Barsoum (a2)...


Herein rutile (TiO2) single-crystal surfaces, with (001) and (100) orientations, were indented with hemispherical indenters with radii of 13.5, 5, and 1.4 μm. By converting the load–displacement data to nanoindentation (NI) stress–strain curves, together with microscopic post-indentation observations, we conclude that in the (001) orientation, plastic deformation occurs by the activation of all four {101}<10> slip systems. In the (100) orientation, only two of the four {101}<10 > slip systems, along with {100}<00> slip, are activated. Because the four {101}<10> slip systems in the (001) orientation intersect, the surface is harder and exhibits higher hardening rates after the nucleation of dislocations. The latter are manifested by pop-ins, some of which are large. The pop-in stresses are adequately described by Weibull statistics and were significantly higher for the (001) orientation. The elastic moduli, determined from spherical NI stiffness versus contact radii plots, were 349 ± 5 and 229 ± 4 GPa for (001) and (100) orientations, respectively. Fully spontaneous reversible, stress–strain hysteretic curves—only manifest in the (100) orientation—are attributed to the to-and-fro motion of dislocations comprising incipient kink bands in the {100}<00> slip system.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Diebold, U.: Structure and properties of TiO2 surfaces: A brief review. Appl. Phys. A Mater. Sci. Process. 76, 681 (2003).
2.Park, N-G., Lagemaat, J.d., and Frank, A.J.: Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J. Phys. Chem. B 104, 8989 (2000).
3.Matsuura, S.: New developments and applications of gas sensors in Japan. Sens. Actuators, B 1314, 7 (1993).
4.Okimura, K., Maeda, N., and Shibata, A.: Characteristics of rutile TiO2 films prepared by r.f. magnetron sputtering at a low temperature. Thin Solid Films 281282, 427 (1996).
5.Feng, B., Chen, J.Y., Qi, S.K., He, L., Zhao, J.Z., and Zhang, X.D.: Characterization of surface oxide films on titanium and bioactivity. J. Mater. Sci.- Mater. Med. 13, 457 (2002).
6.Kadoshima, M., Hiratani, M., Shimamoto, Y., Torii, K., Miki, H., Kimura, S., and Nabatame, T.: Rutile-type TiO2 thin film for high-k gate insulator. Thin Solid Films 424, 224 (2003).
7.Hirthe, W.M. and Brittain, J.O.: Dislocations in rutile as revealed by the etch-pit technique. J. Am. Ceram. Soc. 45, 546 (1962).
8.Ashbee, K.H.G. and Smallman, R.E.: The plastic deformation of titanium dioxide single crystals. Proc. R. Soc. London, Ser.A 274, 195 (1963).
9.Blanchin, M.G., Bursill, L.A., and Lafage, C.: Deformation and microstructure of rutile. Proc. R. Soc. London, Ser. A 429, 175 (1990).
10.Li, H. and Bradt, R.C.: Knoop microhardness anisotropy of single crystal rutile. J. Am. Ceram. Soc. 73, 1360 (1990).
11.Li, H. and Bradt, R.C.: The microhardness indentation load/size effect in rutile and cassiterite single crystals. J. Mater. Sci. 28, 917 (1993).
12.Basu, S. and Barsoum, M.W.: Deformation micromechanisms of ZnO single crystals as determined from spherical nanoindentation stress-strain curves. J. Mater. Res. 22, 2470 (2007).
13.Mayo, M.J., Siegel, R.W., Narayanasamy, A., and Nix, W.D.: Mechanical properties of nanophase TiO2 as determined by nanoindentation. J. Mater. Res. 5, 1073 (1990).
14.Kurosaki, K., Setoyama, D., Matsunaga, J., and Yamanaka, S.: Nanoindentation tests for TiO2, MgO, and YSZ single crystals. J. Alloy. Comp. 386, 261 (2005).
15.Olofinjana, A.O., Bell, J.M., and Jamting, A.K.: Evaluation of the mechanical properties of sol-gel-deposited titania films using ultra-micro-indentation method. Wear 241, 174 (2000).
16.Basu, S., Moseson, A., and Barsoum, M.W.: On the determination of spherical nanoindentation stress-strain curves. J. Mater. Res. 21, 2628 (2006).
17.Moseson, A.J., Basu, S., and Barsoum, M.W.: Determination of the effective zero point of contact for spherical nanoindentation. J. Mater. Res. 23, 204 (2008).
18.Basu, S., Barsoum, M.W., and Kalidindi, S.R.: Sapphire: A kinking nonlinear elastic solid. J. Appl. Phys. 99, 063501 (2006).
19.Basu, S., Zhou, A., and Barsoum, M.W.: Reversible dislocation motion under contact loading in LiNbO3 single crystal. J. Mater. Res. 23, 1334 (2008).
20.Basu, S., Zhou, A., and Barsoum, M.W.: On spherical nanoindentations, kinking nonlinear elasticity of mica single crystals and their geological implications. J. Struct. Geol. 31, 791 (2009).
21.Barsoum, M.W., Murugaiah, A., Kalidindi, S.R., and Zhen, T.: Kinking nonlinear elastic solids, nanoindentations and geology. Phys. Rev. Lett. 92, 255508 (2004).
22.Buchs, R., Basu, S., Elshrief, O., Coward, R., and Barsoum, M.W.: Spherical nanoindentation and vickers microhardness study of the deformation of poled BaTiO3 single crystals. J. Appl. Phys. 105, 093540 (2009).
23.Basu, S., Barsoum, M.W., Williams, A.D., and Moustakas, T.D.: Spherical nanoindentation and deformation mechanisms in free-standing GaN films. J. Appl. Phys. 101, 083522 (2007).
24.Sneddon, I.N.: The relaxation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
25.Barsoum, M.W., Zhen, T., Kalidindi, S.R., Radovic, M., and Murugahiah, A.: Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nat. Mater. 2, 107 (2003).
26.Barsoum, M.W., Murugaiah, A., Kalidindi, S.R., and Gogotsi, Y.: Kink bands, nonlinear elasticity and nanoindentations in graphite. Carbon 42, 1435 (2004).
27.Barsoum, M.W., Zhen, T., Zhou, A., Basu, S., and Kalidindi, S.R.: Microscale modeling of kinking nonlinear elastic solids. Phys. Rev. B 71, 134101 (2005).
28.Zhou, A., Basu, S., and Barsoum, M.W.: Kinking nonlinear elasticity, damping, micro- and macroyielding of hexagonal close-packed metals. Acta Mater. 56, 60 (2008).
29.Barsoum, M.W. and Basu, S.: Kinking nonlinear elastic solids, in Encyclopedia of Materials: Science and Technology, edited by Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., and Veyssiere, P. (Elsevier, Oxford, 2010).
30.Murugaiah, A., Barsoum, M.W., Kalidindi, S.R., and Zhen, T.: Spherical nanoindentations in Ti3SiC2. J. Mater. Res. 19, 1139 (2004).
31.Zhou, A.G., Barsoum, M.W., Basu, S., Kalidindi, S.R., and El-Raghy, T.: Incipient and regular kink bands in dense and porous Ti2AlC. Acta Mater. 54, 1631 (2006).
32.Frank, F.C. and Stroh, A.N.: On the theory of kinking. Proc. Phys. Soc. 65, 811 (1952).
33.Hertz, H.: Miscellaneous Papers by H. Hertz (Macmillan, London, 1896).
34.Wachtman, J.B., Tefft, W.E., and Lam, D.G.: Elastic constants of rutile (TiO2). J. Res. Nat. Bur. Stand. 66A, 465 (1962).
35.Chang, E. and Graham, E.K.: The elastic constants of cassiterite SnO2 and their pressure and temperature dependence. J. Geophys. Res. 80, 2595 (1975).
36.Isaak, D.G., Carnes, J.D., Anderson, O.L., Cynn, H., and Hake, E.: Elasticity of TiO2 rutile to 1800 K. Phys. Chem. Miner. 26, 31 (1998).
37.Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johansen, H., and Leipner, H.S.: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67, 172101 (2003).
38.Schuh, C.A., Mason, J.K., and Lund, A.C.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).
39.Morris, J.R., Bei, H., Pharr, G.M., and George, E.P.: Size effects and stochastic behavior of nanoindentation pop in. Phys. Rev. Lett. 106, 165502 (2011).
40.Ashbee, K.H.G. and Smallman, R.E.: Stress-strain behavior of titanium dioxide (rutile) single crystals. J. Am. Ceram. Soc. 46, 211 (1963).
41.Zhou, A.G. and Barsoum, M.W.: Kinking nonlinear elastic deformation of Ti3AlC2, Ti2AlC, Ti3Al(C0.5, N0.5)2 and Ti2Al(C0.5, N0.5). J. Alloy. Comp. 498, 62 (2010).
42.Anasori, B.: Spherical nanoindentation study of the deformation micromechanisms of LiTaO3 single crystals. J. Appl. Phys. 110, 023516 (2011).
43.Ma, X.G., Liang, P., Miao, L., Bie, S.W., Zhang, C.K., Xu, L., and Jiang, J.J.: Pressure-induced phase transition and elastic properties of TiO2 polymorphs. Phys. Status Solidi B 246, 2132 (2009).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed