Skip to main content

Microstructural evolution and functional fatigue of a Ti–25Ta high-temperature shape memory alloy

  • Hans Jürgen Maier (a1), Elvira Karsten (a1), Alexander Paulsen (a2), Dennis Langenkämper (a2), Peer Decker (a2), Jan Frenzel (a2), Christoph Somsen (a2), Alfred Ludwig (a2), Gunther Eggeler (a2) and Thomas Niendorf (a3)...

Titanium–tantalum based alloys can demonstrate a martensitic transformation well above 100 °C, which makes them attractive for shape memory applications at elevated temperatures. In addition, they provide for good workability and contain only reasonably priced constituents. The current study presents results from functional fatigue experiments on a binary Ti–25Ta high-temperature shape memory alloy. This material shows a martensitic transformation at about 350 °C along with a transformation strain of 2 pct at a bias stress of 100 MPa. The success of most of the envisaged applications will, however, hinge on the microstructural stability under thermomechanical loading. Thus, light and electron optical microscopy as well X-ray diffraction were used to uncover the mechanisms that dominate functional degradation in different temperature regimes. It is demonstrated the maximum test temperature is the key parameter that governs functional degradation in the thermomechanical fatigue tests. Specifically, ω-phase formation and local decomposition in Ti-rich and Ta-rich areas dominate when T max does not exceed ≈430 °C. As T max is increased, the detrimental phases start to dissolve and functional fatigue can be suppressed. However, when T max reaches ≈620 °C, structural fatigue sets in, and fatigue life is again deteriorated by oxygen-induced crack formation.

Corresponding author
a) Address all correspondence to these authors. e-mail:
b) e-mail:
Hide All

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to

Contributing Editor: Yuntian Zhu

Hide All
1. Otsuka K. and Ren X.: Recent developments in the research of shape memory alloys. Intermetallics 7(5), 511 (1999).
2. Ma J., Karaman I., and Noebe R.D.: High temperature shape memory alloys. Int. Mater. Rev. 55(5), 257 (2010).
3. Lindquist P.G. and Wayman C.M.: Shape memory and transformation behavior of martensitic Ti–Pd–Ni and Ti–Pt–Ni alloys. In Engineering Aspects of Shape Memory Alloys, Duerig T.W., Melton K.N., Stöckel D., and Wayman C.M., eds. (Butterworth-Heinemann, London, Boston, Singapore, Sydney, Toronto, Wellington, 1990); p. 58.
4. Van Humbeeck J.: High temperature shape memory alloys. J. Eng. Mater. Technol. 121(1), 98 (1999).
5. Noebe R., Gaydosh D., Padula S. II, Garg A., Biles T., Nathal M., and Armstrong W.D.: Properties and potential of two (Ni, Pt) Ti alloys for use as high-temperature actuator materials. Smart Mater. Struct. 5761, 364 (2005).
6. Atli K.C., Karaman I., and Noebe R.D.: Influence of tantalum additions on the microstructure and shape memory response of Ti50.5Ni24Pd25 high-temperature shape memory alloy. Mater. Sci. Eng., A 613, 250 (2014).
7. Meng X.L., Zheng Y.F., Cai W., and Zhao L.C.: Two-way shape memory effect of a TiNiHf high temperature shape memory alloy. J. Alloys Compd. 372(1–2), 180 (2004).
8. Besseghini S., Villa E., and Tuissi A.: Ni–Ti–Hf shape memory alloy: Effect of aging and thermal cycling. Mater. Sci. Eng., A 273, 390 (1999).
9. Saghaian S.M., Karaca H.E., Souri M., Turabi A.S., and Noebe R.D.: Tensile shape memory behavior of Ni50.3Ti29.7Hf20 high temperature shape memory alloys. Mater. Des. 101, 340 (2016).
10. Saghaian S.M., Karaca H.E., Tobe H., Souri M., Noebe R., and Chumlyakov Y.I.: Effects of aging on the shape memory behavior of Ni-rich Ni50.3Ti29.7Hf20 single crystals. Acta Mater. 87, 128 (2015).
11. Canadinc D., Trehern W., Oscan H., Hayrettin C., Karakoc O., Karaman I., Sun F., and Chaudhry Z.: On the deformation response and cyclic stability of Ni50Ti35Hf15 high temperature shape memory alloy wires. Scr. Mater. 135, 92 (2017).
12. Buenconsejo P.J.S., Kim H.Y., Hosoda H., and Miyazaki S.: Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater. 57(4), 1068 (2009).
13. Zhang J., Rynko R., Frenzel J., Somsen C., and Eggeler G.: Ingot metallurgy and microstructural characterization of Ti–Ta alloys. Int. J. Mater. Res. 105, 156 (2014).
14. Buenconsejo P.J.S.: Development and characterization of Ti–Ni based and Ti–Ta based shape memory alloys for novel applications. Ph.D. thesis, University of Tsukuba, Japan, 2009.
15. Hickman B.S.: The formation of omega phase in titanium and zirconium alloys: A review. J. Mater. Sci. 4, 554 (1969).
16. Murray J.L.: The Ta–Ti (tantalum–titanium) system. Bull. Alloy Phase Diagrams 2(1), 62 (1981).
17. Niendorf T., Krooß P., Somsen C., Rynko R., Paulsen A., Batyrshina E., Frenzel J., Eggeler G., and Maier H.J.: Cyclic degradation of titanium–tantalum high-temperature shape memory alloys—The role of dislocation activity and chemical decomposition. Funct. Mater. Lett. 8, 1550062 (2015).
18. Niendorf T., Krooß P., Batyrsina E., Paulsen A., Motemani Y., Ludwig A., Buenconsejo P., Frenzel J., Eggeler G., and Maier H.J.: Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HTSMAs). Mater. Sci. Eng., A 620, 359 (2015).
19. Niendorf T., Krooß P., Batyrsina E., Paulsen A., Frenzel J., Eggeler G., and Maier H.J.: On the functional degradation of binary titanium–tantalum high-temperature shape memory alloys—A new concept for fatigue life extension. Funct. Mater. Lett. 7, 1450042 (2014).
20. Buenconsejo P.J.S., Kim H.Y., and Miyazaki S.: Novel β-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr. Mater. 64, 1114 (2011).
21. Rynko R., Marquardt A., Paulsen A., Frenzel J., Somsen C., and Eggeler G.: Microstructural evolution in a Ti–Ta high-temperature shape memory alloy during creep. Int. J. Mater. Res. 106, 331 (2015).
22. Kim H.Y., Fukushima T., Buenconsejo P.J., Nam T., and Miyazaki S.: Martensitic transformation and shape memory properties of Ti–Ta–Sn high temperature shape memory alloys. Mater. Sci. Eng., A 528, 7238 (2011).
23. Siegert W., Neuking K., Mertmann M., and Eggeler G.: First cycle shape memory effect in the ternary NiTiNb system. J. Phys. 112, 739 (2003).
24. Massalski T.B., Okamato H., Subramanian P.R., and Kacprzak L.: Phasen-Diagramm Ti–Ta, Binary Alloys Phase Diagrams (ASM International, Metals Park, Ohio, 1990).
25. Williams J.C., Hickman B.S., and Leslie D.H.: The effect of ternary additions on the decomposition of metastable beta-phase Ti alloys. Metall. Trans. 2, 477 (1971).
26. Hickman B.S.: Omega phase precipitation in alloys of titanium with transition metals. Trans. Metall. Soc. AIME 245, 1329 (1969).
27. Rynko R.: Mikrostrukturelle Untersuchungen von thermisch und thermomechanisch induzierten Strukturbildungsprozessen in Ti–Ta Hochtemperatur-Formgedächtnislegierungen. Ph.D. thesis, Ruhr-Universität Bochum, Bochum, Germany, 2015.
28. Albrecht J., Duering T., and Richter D.: Verfahren zur Herstellung eines Bauteils aus einer Titanlegierung, sowie Bauteil und Verwendung des Bauteils. Europäische Patentanmeldung Patent Number 0062365, 7, 1982.
29. Atli K.C., Karaman I., Noebe R.D., and Gaydosh D.: The effect of training on two-way shape memory effect of binary NiTi and NiTi based ternary high temperature shape memory alloys. Mater. Sci. Eng., A 560, 653 (2013).
30. Dadda J., Maier H.J., Karaman I., and Chumlyakov Y.: High-temperature in situ microscopy during stress-induced phase transformations in Co49Ni21Ga30 shape memory alloy single crystals. Int. J. Mater. Res. 101, 1503 (2010).
31. Dadda J., Maier H.J., Karaman I., and Chumlyakov Y.I.: Cyclic deformation and austenite stabilization in Co35Ni35Al30 single crystalline high-temperature shape memory alloys. Acta Mater. 57, 6123 (2009).
32. Grossmann Ch., Frenzel J., Sampath V., Depka T., and Eggeler G.: Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall. Mater. Trans. A 40, 2530 (2009).
33. Al-Zain Y., Sato Y., Kim H.Y., Hosoda H., Nam T.H., and Miyazaki S.: Room temperature aging behavior of Ti–Nb–Mo-based superelastic alloys. Acta Mater. 60, 2437 (2012).
34. Peters M., Hemptenmacher J., Kumpfert J., and Leyens C.: Titan und Titanlegierungen: Struktur, Gefüge, Eigenschaften. In Titan und Titanlegierungen, Peters M. and Leyens C., eds. (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2002); p. 1.
35. Boyer R., Welsch G., and Collings E.W.: Materials Properties Handbook: Titanium Alloys (ASM International, Materials Park, OH, 1994).
36. Bieler T.R., Trevino R.M., and Zeng L.: Alloys: Titanium. In Bassani F., Liedl G.L., and Wyder P., eds., Encyclopedia of Condensed Matter Physics (Elsevier, 2005); p. 65.
37. Vojtovich R.F. and Golovko Eh.I.: Oxidation of Ti–Ta and Ti–Nb alloys. Izv. Akad. Nauk SSSR, Met. 1, 222 (1979).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 132 *
Loading metrics...

* Views captured on Cambridge Core between 8th August 2017 - 18th November 2017. This data will be updated every 24 hours.