Skip to main content
×
Home
    • Aa
    • Aa

The microstructure and corrosion resistance of biological Mg–Zn–Ca alloy processed by high-pressure torsion and subsequently annealing

  • Congzheng Zhang (a1), Shaokang Guan (a1), Liguo Wang (a1), Shijie Zhu (a1) and Lei Chang (a1)...
Abstract
Abstract

Magnesium alloy has great potential for bone implantation. However, its corrosion rate is fast in physiological environment. In this paper, biological Mg–Zn–Ca alloy was processed by high pressure torsion (HPT) and subsequently annealed at 90–270 °C for 30 min. The microstructure and corrosion resistance in simulated body fluid were investigated. The results revealed that with the rise of the annealing temperature, the grain size of the HPT alloy gradually increased and the relative diffraction peak intensity of (0002) grain orientation decreased. The amount of second phases increased first and then decreased, while the surface stress decreased first and then increased. All of these changes affected the corrosion rate simultaneously. The corrosion resistance of the HPT alloy increased first and then decreased with the rise of annealing temperature. After annealing at 210 °C for 30 min, the corrosion resistance was the best. Therefore, it was feasible to control the corrosion rate via annealing treatment.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: skguan@zzu.edu.cn
Footnotes
Hide All
Contributing Editor: Jürgen Eckert
Footnotes
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Y. Chen , Z. Xu , C. Smith , and J. Sankar : Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10(11), 4561 (2014).

N. Li and Y. Zheng : Novel magnesium alloys developed for biomedical application: A review. J. Mater. Sci. Technol. 29(6), 489 (2013).

Y. Xin , K. Huo , T. Hu , G. Tang , and P.K. Chu : Corrosion products on biomedical magnesium alloy soaked in simulated body fluids. J. Mater. Res. 24(8), 2711 (2009).

Q. Chen and G.A. Thouas : Metallic implant biomaterials. Mater. Sci. Eng., R 87, 1 (2015).

N.T. Kirkland , N. Birbilis , and M.P. Staiger : Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater. 8(3), 925 (2012).

S. Virtanen : Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. Mater. Sci. Eng., B 176(20), 1600 (2011).

A. Atrens , M. Liu , and N.I. Zainal Abidin : Corrosion mechanism applicable to biodegradable magnesium implants. Mater. Sci. Eng., B 176(20), 1609 (2011).

Y. Xin , T. Hu , and P.K. Chu : In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review. Acta Biomater. 7(4), 1452 (2011).

Y. Xin , C. Liu , X. Zhang , G. Tang , X. Tian , and P.K. Chu : Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. J. Mater. Res. 22(7), 2004 (2007).

K. Edalati , T. Daio , S. Lee , Z. Horita , T. Nishizaki , T. Akune , T. Nojima , and T. Sasaki : High strength and superconductivity in nanostructured niobium–titanium alloy by high-pressure torsion and annealing: Significance of elemental decomposition and supersaturation. Acta Mater. 80, 149 (2014).

G. Reglitz , B. Oberdorfer , N. Fleischmann , J.A. Kotzurek , S.V. Divinski , W. Sprengel , G. Wilde , and R. Würschum : Combined volumetric, energetic and microstructural defect analysis of ECAP-processed nickel. Acta Mater. 103, 396 (2016).

C.X. Huang , Y.L. Gao , G. Yang , S.D. Wu , G.Y. Li , and S.X. Li : Bulk nanocrystalline stainless steel fabricated by equal channel angular pressing. J. Mater. Res. 21(7), 1687 (2006).

L. Shi , C.S. Wu , S. Gao , and G.K. Padhy : Modified constitutive equation for use in modeling the ultrasonic vibration enhanced friction stir welding process. Scr. Mater. 119, 21 (2016).

A. Bachmaier , G.B. Rathmayr , M. Bartosik , D. Apel , Z. Zhang , and R. Pippan : New insights on the formation of supersaturated solid solutions in the Cu–Cr system deformed by high-pressure torsion. Acta Mater. 69, 301 (2014).

K. Edalati and Z. Horita : A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng., A 652, 325 (2016).

P. Minárik , R. Král , J. Čížek , and F.E. Chmelík : Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP. Acta Mater. 107, 83 (2016).

H. Bahmanpour , Y. Sun , T. Hu , D. Zhang , and J. Wongsa-Ngam : Microstructural evolution of cryomilled Ti/Al mixture during high-pressure torsion. J. Mater. Res. 29(4), 578 (2014).

K. Edalati , T. Daio , Z. Horita , K. Kishida , and H. Inui : Evolution of lattice defects, disordered/ordered phase transformations and mechanical properties in Ni–Al–Ti intermetallics by high-pressure torsion. J. Alloys Compd. 563, 221 (2013).

C. Gode , H. Yilmazer , I. Ozdemir , and Y. Todaka : Microstructural refinement and wear property of Al–Si–Cu composite subjected to extrusion and high-pressure torsion. Mater. Sci. Eng., A 618, 377 (2014).

M.I.A.E. Aal and H.S. Kim : Wear properties of high pressure torsion processed ultrafine grained Al–7% Si alloy. Mater. Des. 53, 373 (2014).

D.H. Lee , I.C. Choi , M.Y. Seok , J. He , Z. Lu , J.Y. Suh , M. Kawasaki , T.G. Langdon , and J.I. Jang : Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30(18), 1 (2015).

K. Edalati , H. Emami , Y. Ikeda , H. Iwaoka , I. Tanaka , E. Akiba , and Z. Horita : New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium–zirconium system produced by high-pressure torsion. Acta Mater. 108, 293 (2016).

M. Kai , Z. Horita , and T.G. Langdon : Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng., A 488(1–2), 117 (2008).

J. Kratochvíl , M. Kružík , and R. Sedláček : A model of ultrafine microstructure evolution in materials deformed by high-pressure torsion. Acta Mater. 57(3), 739 (2009).

R.Z. Valiev and T.G. Langdon : Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51(7), 881 (2006).

K. Edalati , A. Yamamoto , Z. Horita , and T. Ishihara : High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scr. Mater. 64(9), 880 (2011).

A.P. Zhilyaev and T.G. Langdon : Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53(6), 893 (2008).

J.J. Jonas , C. Ghosh , and L.S. Toth : The equivalent strain in high pressure torsion. Mater. Sci. Eng., A 607, 530 (2014).

R.Z. Valiev , R.K. Islamgaliev , and I.V. Alexandrov : Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45(2), 103 (2000).

R.B. Figueiredo and T.G. Langdon : Development of structural heterogeneities in a magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng., A 528(13–14), 4500 (2011).

P. Serre , R.B. Figueiredo , N. Gao , and T.G. Langdon : Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng., A 528(10–11), 3601 (2011).

S.A. Alsubaie , P. Bazarnik , M. Lewandowska , Y. Huang , and T.G. Langdon : Evolution of microstructure and hardness in an AZ80 magnesium alloy processed by high-pressure torsion. J. Mater. Res. Technol. 5(2), 152 (2016).

J.H. Gao , S.K. Guan , Z.W. Ren , Y.F. Sun , S.J. Zhu , and B. Wang : Homogeneous corrosion of high pressure torsion treated Mg–Zn–Ca alloy in simulated body fluid. Mater. Lett. 65(4), 691 (2011).

L. Rennie , C.M. Court-Brown , J.Y. Mok , and T.F. Beattie : The epidemiology of fractures in children. Injury 38(8), 913 (2007).

G.L. Song and A. Atrens : Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1(1), 11 (1999).

Z. Shi , M. Liu , and A. Atrens : Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 52(2), 579 (2010).

C. Zhang , S. Guan , L. Wang , S. Zhu , J. Wang , and R. Guo : Effect of solution pretreatment on homogeneity and corrosion resistance of biomedical Mg–Zn–Ca alloy processed by high pressure torsion. Adv. Eng. Mater. 19(1), doi: 10.1002/adem.201600326 (2017).

T. Kokubo and H. Takadama : How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15), 2907 (2006).

R. Walter and M.B. Kannan : In vitro degradation behaviour of WE54 magnesium alloy in simulated body fluid. Mater. Lett. 65(4), 748 (2011).

A. Atrens , G.L. Song , M. Liu , Z. Shi , F. Cao , and M.S. Dargusch : Review of recent developments in the field of magnesium corrosion. Adv. Eng. Mater. 17(4), 400453 (2015).

N.I. Zainal Abidin , B. Rolfe , H. Owen , J. Malisano , D. Martin , J. Hofstetter , P.J. Uggowitzer , and A. Atrens : The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91. Corros. Sci. 75, 354 (2013).

S. Johnston , Z. Shi , and A. Atrens : The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks’ solution. Corros. Sci. 101, 182 (2015).

G. Levi , S. Avraham , A. Zilberov , and M. Bamberger : Solidification, solution treatment and age hardening of a Mg–1.6 wt% Ca–3.2 wt% Zn alloy. Acta Mater. 54(2), 523 (2006).

L.B. Tong , M.Y. Zheng , L.R. Cheng , D.P. Zhang , S. Kamado , J. Meng , and H.J. Zhang : Influence of deformation rate on microstructure, texture and mechanical properties of indirect-extruded Mg–Zn–Ca alloy. Mater. Charact. 104, 66 (2015).

Y. Lu , A.R. Bradshaw , Y.L. Chiu , and I.P. Jones : Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys. Mater. Sci. Eng., C 48, 480 (2015).

X. Gao and J.F. Nie : Characterization of strengthening precipitate phases in a Mg–Zn alloy. Scr. Mater. 56(8), 645 (2007).

J.B. Clark : Transmission electron microscopy study of age hardening in a Mg–5 wt% Zn alloy. Acta Metall. 13(12), 1281 (1965).

C.M. Cepeda-Jiménez , J.M. García-Infanta , A.P. Zhilyaev , O.A. Ruano , and F. Carreño : Influence of the thermal treatment on the deformation-induced precipitation of a hypoeutectic Al–7 wt% Si casting alloy deformed by high-pressure torsion. J. Alloys Compd. 509(3), 636 (2011).

F. Meng , J.M. Rosalie , A. Singh , and K. Tsuchiya : Precipitation behavior of an ultra-fine grained Mg–Zn alloy processed by high-pressure torsion. Mater. Sci. Eng., A 644, 386 (2015).

D. Eliezer , E. Aghion , and F.H. Froes : Magnesium science, technology and applications. Adv. Perform. Mater. 5(3), 201 (1998).

E. Ghali , W. Dietzel , and K.U. Kainer : General and localized corrosion of magnesium alloys: A critical review. J. Mater. Eng. Perform. 13(1), 7 (2004).

G.R. Argade , S.K. Panigrahi , and R.S. Mishra : Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros. Sci. 58, 145 (2012).

N. Birbilis , K.D. Ralston , S. Virtanen , H.L. Fraser , and C.H.J. Davies : Grain character influences on corrosion of ECAPed pure magnesium. Corros. Eng., Sci. Technol. 45(3), 224 (2010).

N.N. Aung and W. Zhou : Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros. Sci. 52(2), 589 (2010).

R. Zeng , K.U. Kainer , C. Blawert , and W. Dietzel : Corrosion of an extruded magnesium alloy ZK60 component—The role of microstructural features. J. Alloys Compd. 509(13), 4462 (2011).

M. Laleh and F. Kargar : Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy. J. Alloys Compd. 509(37), 9150 (2011).

N. Winzer , A. Atrens , G. Song , E. Ghali , W. Dietzel , and K.U. Kainer : A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Adv. Eng. Mater. 7(8), 659 (2005).

D.A. Horner , B.J. Connolly , S. Zhou , L. Crocker , and A. Turnbull : Novel images of the evolution of stress corrosion cracks from corrosion pits. Corros. Sci. 53(11), 3466 (2011).

L. Choudhary , J. Szmerling , R. Goldwasser , and R.K.S. Raman : Investigations into stress corrosion cracking behaviour of AZ91D magnesium alloy in physiological environment. Procedia Eng. 10, 518 (2011).

A. Atrens , N. Winzer , W. Dietzel , P.B. Srinivasan , and G.L. Song : 8-Stress corrosion cracking (SCC) of magnesium (Mg) alloys. In Corrosion of Magnesium Alloys, G.L. Song ed. (Woodhead Publishing, London, 2011); p. 299.

M. Liu , D. Qiu , M. Zhao , G. Song , and A. Atrens : The effect of crystallographic orientation on the active corrosion of pure magnesium. Scr. Mater. 58(5), 421 (2008).

G. Song , R. Mishra , and Z. Xu : Crystallographic orientation and electrochemical activity of AZ31 Mg alloy. Electrochem. Commun. 12(8), 1009 (2010).

P.R. Seré , J.D. Culcasi , C.I. Elsner , and A.R. Di Sarli : Relationship between texture and corrosion resistance in hot-dip galvanized steel sheets. Surf. Coat. Technol. 122(2–3), 143 (1999).

H. Asgari , M.R. Toroghinejad , and M.A. Golozar : Relationship between (00.2) and (20.1) texture components and corrosion resistance of hot-dip galvanized zinc coatings. J. Mater. Process Technol. 198(1–3), 54 (2008).

R. Xin , B. Li , L. Li , and Q. Liu : Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt% NaCl. Mater. Des. 32(8–9), 4548 (2011).

B. Fu , W. Liu , and Z. Li : Calculation of the surface energy of hcp-metals with the empirical electron theory. Appl. Surf. Sci. 255(23), 9348 (2009).

G. Song and Z. Xu : Crystal orientation and electrochemical corrosion of polycrystalline Mg. Corros. Sci. 63, 100 (2012).

G. Song : Recent progress in corrosion and protection of magnesium alloys. Adv. Eng. Mater. 7(7), 563 (2005).

G.L. Song and Z. Xu : Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution. Corros. Sci. 54(1), 97 (2012).

G. Song and Z. Xu : The surface, microstructure and corrosion of magnesium alloy AZ31 sheet. Electrochim. Acta 55(13), 4148 (2010).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 9
Total number of PDF views: 58 *
Loading metrics...

Abstract views

Total abstract views: 191 *
Loading metrics...

* Views captured on Cambridge Core between 14th March 2017 - 28th June 2017. This data will be updated every 24 hours.