Skip to main content
×
×
Home

The microstructure and corrosion resistance of biological Mg–Zn–Ca alloy processed by high-pressure torsion and subsequently annealing

  • Congzheng Zhang (a1), Shaokang Guan (a1), Liguo Wang (a1), Shijie Zhu (a1) and Lei Chang (a1)...
Abstract
Abstract

Magnesium alloy has great potential for bone implantation. However, its corrosion rate is fast in physiological environment. In this paper, biological Mg–Zn–Ca alloy was processed by high pressure torsion (HPT) and subsequently annealed at 90–270 °C for 30 min. The microstructure and corrosion resistance in simulated body fluid were investigated. The results revealed that with the rise of the annealing temperature, the grain size of the HPT alloy gradually increased and the relative diffraction peak intensity of (0002) grain orientation decreased. The amount of second phases increased first and then decreased, while the surface stress decreased first and then increased. All of these changes affected the corrosion rate simultaneously. The corrosion resistance of the HPT alloy increased first and then decreased with the rise of annealing temperature. After annealing at 210 °C for 30 min, the corrosion resistance was the best. Therefore, it was feasible to control the corrosion rate via annealing treatment.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: skguan@zzu.edu.cn
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

Footnotes
References
Hide All
1. Chen Y., Xu Z., Smith C., and Sankar J.: Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10(11), 4561 (2014).
2. Li N. and Zheng Y.: Novel magnesium alloys developed for biomedical application: A review. J. Mater. Sci. Technol. 29(6), 489 (2013).
3. Xin Y., Huo K., Hu T., Tang G., and Chu P.K.: Corrosion products on biomedical magnesium alloy soaked in simulated body fluids. J. Mater. Res. 24(8), 2711 (2009).
4. Chen Q. and Thouas G.A.: Metallic implant biomaterials. Mater. Sci. Eng., R 87, 1 (2015).
5. Kirkland N.T., Birbilis N., and Staiger M.P.: Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater. 8(3), 925 (2012).
6. Virtanen S.: Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. Mater. Sci. Eng., B 176(20), 1600 (2011).
7. Atrens A., Liu M., and Zainal Abidin N.I.: Corrosion mechanism applicable to biodegradable magnesium implants. Mater. Sci. Eng., B 176(20), 1609 (2011).
8. Xin Y., Hu T., and Chu P.K.: In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review. Acta Biomater. 7(4), 1452 (2011).
9. Xin Y., Liu C., Zhang X., Tang G., Tian X., and Chu P.K.: Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. J. Mater. Res. 22(7), 2004 (2007).
10. Edalati K., Daio T., Lee S., Horita Z., Nishizaki T., Akune T., Nojima T., and Sasaki T.: High strength and superconductivity in nanostructured niobium–titanium alloy by high-pressure torsion and annealing: Significance of elemental decomposition and supersaturation. Acta Mater. 80, 149 (2014).
11. Reglitz G., Oberdorfer B., Fleischmann N., Kotzurek J.A., Divinski S.V., Sprengel W., Wilde G., and Würschum R.: Combined volumetric, energetic and microstructural defect analysis of ECAP-processed nickel. Acta Mater. 103, 396 (2016).
12. Huang C.X., Gao Y.L., Yang G., Wu S.D., Li G.Y., and Li S.X.: Bulk nanocrystalline stainless steel fabricated by equal channel angular pressing. J. Mater. Res. 21(7), 1687 (2006).
13. Shi L., Wu C.S., Gao S., and Padhy G.K.: Modified constitutive equation for use in modeling the ultrasonic vibration enhanced friction stir welding process. Scr. Mater. 119, 21 (2016).
14. Bachmaier A., Rathmayr G.B., Bartosik M., Apel D., Zhang Z., and Pippan R.: New insights on the formation of supersaturated solid solutions in the Cu–Cr system deformed by high-pressure torsion. Acta Mater. 69, 301 (2014).
15. Edalati K. and Horita Z.: A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng., A 652, 325 (2016).
16. Minárik P., Král R., Čížek J., and Chmelík F.E.: Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP. Acta Mater. 107, 83 (2016).
17. Bahmanpour H., Sun Y., Hu T., Zhang D., and Wongsa-Ngam J.: Microstructural evolution of cryomilled Ti/Al mixture during high-pressure torsion. J. Mater. Res. 29(4), 578 (2014).
18. Edalati K., Daio T., Horita Z., Kishida K., and Inui H.: Evolution of lattice defects, disordered/ordered phase transformations and mechanical properties in Ni–Al–Ti intermetallics by high-pressure torsion. J. Alloys Compd. 563, 221 (2013).
19. Gode C., Yilmazer H., Ozdemir I., and Todaka Y.: Microstructural refinement and wear property of Al–Si–Cu composite subjected to extrusion and high-pressure torsion. Mater. Sci. Eng., A 618, 377 (2014).
20. Aal M.I.A.E. and Kim H.S.: Wear properties of high pressure torsion processed ultrafine grained Al–7% Si alloy. Mater. Des. 53, 373 (2014).
21. Lee D.H., Choi I.C., Seok M.Y., He J., Lu Z., Suh J.Y., Kawasaki M., Langdon T.G., and Jang J.I.: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30(18), 1 (2015).
22. Edalati K., Emami H., Ikeda Y., Iwaoka H., Tanaka I., Akiba E., and Horita Z.: New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium–zirconium system produced by high-pressure torsion. Acta Mater. 108, 293 (2016).
23. Kai M., Horita Z., and Langdon T.G.: Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng., A 488(1–2), 117 (2008).
24. Kratochvíl J., Kružík M., and Sedláček R.: A model of ultrafine microstructure evolution in materials deformed by high-pressure torsion. Acta Mater. 57(3), 739 (2009).
25. Valiev R.Z. and Langdon T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51(7), 881 (2006).
26. Edalati K., Yamamoto A., Horita Z., and Ishihara T.: High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scr. Mater. 64(9), 880 (2011).
27. Zhilyaev A.P. and Langdon T.G.: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53(6), 893 (2008).
28. Jonas J.J., Ghosh C., and Toth L.S.: The equivalent strain in high pressure torsion. Mater. Sci. Eng., A 607, 530 (2014).
29. Valiev R.Z., Islamgaliev R.K., and Alexandrov I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45(2), 103 (2000).
30. Kawasaki M., Ahn B., Lee H.J., Zhilyaev A.P., and Langdon T.G.: Using high-pressure torsion to process an aluminum–magnesium nanocomposite through diffusion bonding. J. Mater. Res. 31, 1 (2015).
31. Figueiredo R.B. and Langdon T.G.: Development of structural heterogeneities in a magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng., A 528(13–14), 4500 (2011).
32. Serre P., Figueiredo R.B., Gao N., and Langdon T.G.: Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng., A 528(10–11), 3601 (2011).
33. Alsubaie S.A., Bazarnik P., Lewandowska M., Huang Y., and Langdon T.G.: Evolution of microstructure and hardness in an AZ80 magnesium alloy processed by high-pressure torsion. J. Mater. Res. Technol. 5(2), 152 (2016).
34. Meng F., Rosalie J.M., Singh A., Somekawa H., and Tsuchiya K.: Ultrafine grain formation in Mg–Zn alloy by in situ precipitation during high-pressure torsion. Scr. Mater. 78–79, 57 (2014).
35. Guan S.K., Ren Z.W., Gao J.H., Sun Y.F., Zhu S.J., and Wang L.G.: In vitro degradation of ultrafine grained Mg–Zn–Ca alloy by high-pressure torsion in simulated body fluid. Mater. Sci. Forum 706–709, 504 (2012).
36. Zhang C.Z., Zhu S.J., Wang L.G., Guo R.M., Yue G.C., and Guan S.K.: Microstructures and degradation mechanism in simulated body fluid of biomedical Mg–Zn–Ca alloy processed by high pressure torsion. Mater. Des. 96, 54 (2016).
37. Gao J.H., Guan S.K., Ren Z.W., Sun Y.F., Zhu S.J., and Wang B.: Homogeneous corrosion of high pressure torsion treated Mg–Zn–Ca alloy in simulated body fluid. Mater. Lett. 65(4), 691 (2011).
38. Rennie L., Court-Brown C.M., Mok J.Y., and Beattie T.F.: The epidemiology of fractures in children. Injury 38(8), 913 (2007).
39. Spigarelli S., Regev M., Evangelista E., and Rosen A.: Review of creep behaviour of AZ91 magnesium alloy produced by different technologies. Mater. Sci. Technol. 17(6), 627 (2001).
40. Aghion E. and Bronfin B.: Magnesium alloys development towards the 21st century. Mater. Sci. Forum 350(9), 19 (2000).
41. Song G.L. and Atrens A.: Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1(1), 11 (1999).
42. Shi Z., Liu M., and Atrens A.: Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 52(2), 579 (2010).
43. Drynda A., Hassel T., Hoehn R., Perz A., Bach F.W., and Peuster M.: Development and biocompatibility of a novel corrodible fluoride-coated magnesium–calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications. J. Biomed. Mater. Res., Part A 93(2), 763 (2010).
44. Muhammad Saleh S., Hapipah Mohd A., Mahmood Ameen A., and Siddig Ibrahim A.: Acute oral toxicity evaluations of some zinc(II) complexes derived from 1-(2-salicylaldiminoethyl)piperazine Schiff bases in rats. Int. J. Mol. Sci. 13(2), 1393 (2011).
45. Zhang C., Guan S., Wang L., Zhu S., Wang J., and Guo R.: Effect of solution pretreatment on homogeneity and corrosion resistance of biomedical Mg–Zn–Ca alloy processed by high pressure torsion. Adv. Eng. Mater. 19(1), doi: 10.1002/adem.201600326 (2017).
46. Kokubo T. and Takadama H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15), 2907 (2006).
47. Walter R. and Kannan M.B.: In vitro degradation behaviour of WE54 magnesium alloy in simulated body fluid. Mater. Lett. 65(4), 748 (2011).
48. Atrens A., Song G.L., Liu M., Shi Z., Cao F., and Dargusch M.S.: Review of recent developments in the field of magnesium corrosion. Adv. Eng. Mater. 17(4), 400453 (2015).
49. Zainal Abidin N.I., Rolfe B., Owen H., Malisano J., Martin D., Hofstetter J., Uggowitzer P.J., and Atrens A.: The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91. Corros. Sci. 75, 354 (2013).
50. Johnston S., Shi Z., and Atrens A.: The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks’ solution. Corros. Sci. 101, 182 (2015).
51. Levi G., Avraham S., Zilberov A., and Bamberger M.: Solidification, solution treatment and age hardening of a Mg–1.6 wt% Ca–3.2 wt% Zn alloy. Acta Mater. 54(2), 523 (2006).
52. Du Y.Z., Qiao X.G., Zheng M.Y., Wu K., and Xu S.W.: Development of high-strength, low-cost wrought Mg–2.5 mass% Zn alloy through micro-alloying with Ca and La. Mater. Des. 85, 549 (2015).
53. Tong L.B., Zheng M.Y., Cheng L.R., Zhang D.P., Kamado S., Meng J., and Zhang H.J.: Influence of deformation rate on microstructure, texture and mechanical properties of indirect-extruded Mg–Zn–Ca alloy. Mater. Charact. 104, 66 (2015).
54. Lu Y., Bradshaw A.R., Chiu Y.L., and Jones I.P.: Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys. Mater. Sci. Eng., C 48, 480 (2015).
55. Gao X. and Nie J.F.: Characterization of strengthening precipitate phases in a Mg–Zn alloy. Scr. Mater. 56(8), 645 (2007).
56. Clark J.B.: Transmission electron microscopy study of age hardening in a Mg–5 wt% Zn alloy. Acta Metall. 13(12), 1281 (1965).
57. Cepeda-Jiménez C.M., García-Infanta J.M., Zhilyaev A.P., Ruano O.A., and Carreño F.: Influence of the thermal treatment on the deformation-induced precipitation of a hypoeutectic Al–7 wt% Si casting alloy deformed by high-pressure torsion. J. Alloys Compd. 509(3), 636 (2011).
58. Meng F., Rosalie J.M., Singh A., and Tsuchiya K.: Precipitation behavior of an ultra-fine grained Mg–Zn alloy processed by high-pressure torsion. Mater. Sci. Eng., A 644, 386 (2015).
59. Eliezer D., Aghion E., and Froes F.H.: Magnesium science, technology and applications. Adv. Perform. Mater. 5(3), 201 (1998).
60. Ghali E., Dietzel W., and Kainer K.U.: General and localized corrosion of magnesium alloys: A critical review. J. Mater. Eng. Perform. 13(1), 7 (2004).
61. Argade G.R., Panigrahi S.K., and Mishra R.S.: Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros. Sci. 58, 145 (2012).
62. Birbilis N., Ralston K.D., Virtanen S., Fraser H.L., and Davies C.H.J.: Grain character influences on corrosion of ECAPed pure magnesium. Corros. Eng., Sci. Technol. 45(3), 224 (2010).
63. Aung N.N. and Zhou W.: Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros. Sci. 52(2), 589 (2010).
64. Zeng R., Kainer K.U., Blawert C., and Dietzel W.: Corrosion of an extruded magnesium alloy ZK60 component—The role of microstructural features. J. Alloys Compd. 509(13), 4462 (2011).
65. Laleh M. and Kargar F.: Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy. J. Alloys Compd. 509(37), 9150 (2011).
66. Winzer N., Atrens A., Song G., Ghali E., Dietzel W., and Kainer K.U.: A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Adv. Eng. Mater. 7(8), 659 (2005).
67. Horner D.A., Connolly B.J., Zhou S., Crocker L., and Turnbull A.: Novel images of the evolution of stress corrosion cracks from corrosion pits. Corros. Sci. 53(11), 3466 (2011).
68. Choudhary L., Szmerling J., Goldwasser R., and Raman R.K.S.: Investigations into stress corrosion cracking behaviour of AZ91D magnesium alloy in physiological environment. Procedia Eng. 10, 518 (2011).
69. Atrens A., Winzer N., Dietzel W., Srinivasan P.B., and Song G.L.: 8-Stress corrosion cracking (SCC) of magnesium (Mg) alloys. In Corrosion of Magnesium Alloys, Song G.L. ed. (Woodhead Publishing, London, 2011); p. 299.
70. Liu M., Qiu D., Zhao M., Song G., and Atrens A.: The effect of crystallographic orientation on the active corrosion of pure magnesium. Scr. Mater. 58(5), 421 (2008).
71. Song G., Mishra R., and Xu Z.: Crystallographic orientation and electrochemical activity of AZ31 Mg alloy. Electrochem. Commun. 12(8), 1009 (2010).
72. Davepon B., Schultze J.W., König U., and Rosenkranz C.: Crystallographic orientation of single grains of polycrystalline titanium and their influence on electrochemical processes. Surf. Coat. Technol. 169–170, 85 (2003).
73. Seré P.R., Culcasi J.D., Elsner C.I., and Di Sarli A.R.: Relationship between texture and corrosion resistance in hot-dip galvanized steel sheets. Surf. Coat. Technol. 122(2–3), 143 (1999).
74. Asgari H., Toroghinejad M.R., and Golozar M.A.: Relationship between (00.2) and (20.1) texture components and corrosion resistance of hot-dip galvanized zinc coatings. J. Mater. Process Technol. 198(1–3), 54 (2008).
75. Xin R., Li B., Li L., and Liu Q.: Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt% NaCl. Mater. Des. 32(8–9), 4548 (2011).
76. Fu B., Liu W., and Li Z.: Calculation of the surface energy of hcp-metals with the empirical electron theory. Appl. Surf. Sci. 255(23), 9348 (2009).
77. Song G. and Xu Z.: Crystal orientation and electrochemical corrosion of polycrystalline Mg. Corros. Sci. 63, 100 (2012).
78. Song G.: Recent progress in corrosion and protection of magnesium alloys. Adv. Eng. Mater. 7(7), 563 (2005).
79. Song G.L. and Xu Z.: Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution. Corros. Sci. 54(1), 97 (2012).
80. Song G. and Xu Z.: The surface, microstructure and corrosion of magnesium alloy AZ31 sheet. Electrochim. Acta 55(13), 4148 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 13
Total number of PDF views: 90 *
Loading metrics...

Abstract views

Total abstract views: 378 *
Loading metrics...

* Views captured on Cambridge Core between 14th March 2017 - 19th January 2018. This data will be updated every 24 hours.