Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-30T01:53:23.880Z Has data issue: false hasContentIssue false

Microstructure and superconducting properties of attrition-milled Bi2Sr2CaCu2Ox

Published online by Cambridge University Press:  03 March 2011

J.S. Luo
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
H.G. Lee
Affiliation:
University of Illinois at Chicago, Chicago, Illinois 60680
S.N. Sinha
Affiliation:
University of Illinois at Chicago, Chicago, Illinois 60680
Get access

Abstract

The microstructure and superconducting properties of Bi2Sr2CaCu2Ox (Bi-2212) during high-energy attrition milling were investigated in detail by a combination of x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and magnetization techniques. The starting superconducting powder was milled in a standard laboratory attritor using yttria-stabilized ZrO2 balls and a stainless steel tank. After selected time increments, the milling was interrupted and a small quantity of milled powder was removed for further analysis. It was found that the deformation process rapidly refines Bi-2212 into nanometer-size crystallites, increases atomic-level strains, and changes the plate-like morphology of Bi-2212 to granular submicron clusters. At short milling times, the deformation seems localized at weakly linked Bi-O double layers, leading to twist/cleavage fractures along the {001} planes. The Bi-2212 phase decomposes into several bismuth-based oxides and an amorphous phase after excessive deformation. The superconducting transition is depressed by about 10 K in the early stages of milling and completely vanishes upon prolonged deformation. A deformation mechanism is proposed and correlated with the evolution of superconducting properties. The practical implications of these results are presented and discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
2Weeber, A. W. and Bakker, H., Phys. B 153, 93 (1988).CrossRefGoogle Scholar
3Koch, C. C., Mater. Sci. Forum 88–90, 243 (1992).CrossRefGoogle Scholar
4Matsuzaki, K., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys. 27, L779 (1988).CrossRefGoogle Scholar
5Luo, J. S., Michel, D., and Chevalier, J-P., J. Am. Ceram. Soc. 75, 282 (1992).CrossRefGoogle Scholar
6Sinha, S. N. and Lee, H. G., Trans. IEEE 3, 1161 (1993).Google Scholar
7Park, H. W. and Sinha, S. N., Appl. Supercon. 1, 157 (1993).CrossRefGoogle Scholar
8Lavallee, F., Simoneau, M., and L'Espérance, G., Phys. Rev. B 44,12003 (1991).CrossRefGoogle Scholar
9Kanai, T., Kamo, T., and Matsuda, S-P., Jpn. J. Appl. Phys. 29, L412 (1990).CrossRefGoogle Scholar
10Awano, M., Kani, K., Kodama, Y., Takagi, H., and Kuwahara, Y., Jpn. J. Appl. Phys. 29, L254 (1990).CrossRefGoogle Scholar
11Schaefer, H. E., Wurschurr, R., Birringer, R., and Gleiter, H., J. Less-Comm. Met. 140, 161 (1988).CrossRefGoogle Scholar
12Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).CrossRefGoogle Scholar
13Siegel, R. W., MRS Bull. No. 10, 60 (1990).CrossRefGoogle Scholar
14Luo, J. S., Merchant, N., Maroni, V. A., Gruen, D. M., Tani, B. S., Carter, W. L., Riley, G. N. Jr., and Sandhage, K. H., Appl. Super-con. 1, 101 (1993).CrossRefGoogle Scholar
15Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1958).CrossRefGoogle Scholar
16Guinier, A., X-ray Diffraction (Freeman, San Francisco, CA, 1963).Google Scholar
17Tarascon, J. M., LePage, Y., Barboux, P., Bagley, B. G., Greene, L. H., McKinnon, W. R., Hull, G. W., Giroud, M., and Hwang, D. M., Phys. Rev. B 37, 9382 (1988).CrossRefGoogle Scholar
18Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. 65, 305 (1989).CrossRefGoogle Scholar
19Luo, J. S., Faudot, F., Chevalier, J-P., Portier, R., and Michel, D., J. Solid State Chem. 89, 94 (1990).CrossRefGoogle Scholar
20Raveau, B., Michel, C., Hervieu, M., and Groult, D., Crystal Chemistry ofHigh-Tc Superconducting Copper Oxides (Springer-Verlag, New York, 1992).Google Scholar
21Whangbo, M. H. and Torardi, C. C., Science 249, 1143 (1990).CrossRefGoogle Scholar
22Shi, D., Goretta, K. C., Chen, J. G., and Salem-Sugui, S. Jr., High-Temperature Superconducting Compounds No. III (TMS Proceedings, Warrendale, PA, 1991).Google Scholar
23Kwok, W. K., Welp, U., Crabtree, G. W., Vandervoort, K. G., Hulscher, R., and Liu, J. Z., Phys. Rev. Lett. 64, 966 (1990).CrossRefGoogle Scholar
24Chudnovsky, E. M., Phys. Rev. Lett. 65, 3060 (1990).CrossRefGoogle Scholar
25Luo, J. S., Lee, H., and Sinha, S., in Nanophase and Nanocomposite Materials, edited by Komarneni, S., Parker, J. C., and Thomas, G. J. (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), p. 55.Google Scholar
26Miller, D. J., Sengupta, S., Shi, D., Hettinger, J. D., Gray, K. E., Nash, A. S., and Goretta, K. C., Appl. Phys. Lett. 63, 2823 (1992).CrossRefGoogle Scholar
27Larbalestier, D., MRS Bull. No. 8, 16 (1992).CrossRefGoogle Scholar
28Sandhage, K. H., Riley, G. N. Jr., and Carter, W.L., JOM 43, 21 (1991).CrossRefGoogle Scholar