Skip to main content

Microstructure development in zinc oxide nanowires and iron oxohydroxide nanotubes by cathodic electrodeposition in nanopores

  • Michiel G. Maas (a1), Eddy J.B. Rodijk (a1), A. Wouter Maijenburg (a1), Dave H.A. Blank (a1) and Johan E. ten Elshof (a1)...

The cathodic electrodeposition of crystalline ZnO nanowires and amorphous FeO(OH) nanotubes in polycarbonate track-etched membranes with pore diameters of 50–200 nm is reported. Nitrate was used as a sacrificial precursor for the electrochemical generation of hydroxyl ions that raised the pH of the interior of the nanopore, leading to precipitation of a metal oxide or hydroxide phase. The crystalline and semiconducting ZnO phase formed directly above 60 °C at sufficiently high pH and led to the formation of dense nanowires with preferential (0001) orientation. The morphology of the wire could be influenced by the deposition temperature. Axially segmented gold–ZnO and silver–ZnO nanowires were made. In contrast, the iron hydroxide phase deposited inside the pore as a permeable gel that collapsed and transformed into hollow FeO(OH) tubes during drying. The as-formed nanotubes were amorphous and could be filled with nickel in a subsequent electrodeposition step, yielding core-shell nickel iron-oxohydroxide nanowires. The cathodic efficiency of nitrate reduction was low in both cases, suggesting that diffusional supply of metal ions may be the rate-determining step.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Lieber, C.M. and Wang, Z.L.: Functional nanowires. MRS Bull. 32, 99 (2007).
2.Heo, Y.W., Norton, D.P., Tien, L.C., Kwon, Y., Kang, B.S., Ren, F., Pearton, S.J., and LaRoche, J.R.: ZnO nanowire growth and devices. Mater. Sci. Eng., R 47, 1 (2004).
3.Fan, R., Karnik, R., Yue, M., Li, D., Majumdar, A., and Yang, P.: DNA translocation in inorganic nanotubes. Nano Lett. 5, 1633 (2005).
4.Patolsky, F., Zheng, G., and Lieber, C.M.: Nanowire-based biosensors. Anal. Chem. 78, 4260 (2006).
5.Shen, G., Chen, P.-C., Ryu, K., and Zhou, C.: Devices and chemical sensing applications of metal oxide nanowires. J. Mater. Chem. 19, 828 (2009).
6.Keating, C.D. and Natan, M.J.: Striped metal nanowires as building blocks and optical tags. Adv. Mater. 15, 451 (2003).
7.Bauer, L.A., Reich, D.H., and Meyer, G.J.: Selective functionalization of two-component magnetic nanowires. Langmuir 19, 7043 (2003).
8.Wang, J.: Barcoded metal nanowires. J. Mater. Chem. 18, 4017 (2008).
9.Wang, Y., Hernandez, R.H., Bartlett, D.J. Jr., Bingham, J.M., Kline, T.R., Sen, A., and Mallouk, T.E.: Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22, 10451 (2006).
10.Paxton, W.F., Sundarajam, S., Mallouk, T.E., and Sen, A.: Chemical locomotion. Angew. Chem. Int. Ed. 45, 5420 (2006).
11.Wang, J.: Can man-made nanomachines compete with nature biomotors? ACS Nano 3, 4 (2009).
12.Chen, J. and Cheng, F.: Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 42, 713 (2009).
13.Wagner, R.S. and Ellis, W.C.: Vapor-liquid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).
14.Morales, A.M. and Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).
15.Martin, C.R.: Nanomaterials: A membrane-based synthetic approach. Science 266, 1961 (1994).
16.Li, Y., Meng, G.W., Zhang, L.D., and Phillipp, F.: Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 76, 2011 (2000).
17.Zheng, M.J., Zhang, L.D., Li, G.H., and Shen, W.Z.: Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem. Phys. Lett. 363, 123 (2002).
18.Cui, J.B. and Gibson, U.J.: Electrodeposition and room temperature ferromagnetic anisotropy of Co- and Ni-doped ZnO nanowire arrays. Appl. Phys. Lett. 87, 133108 (2005).
19.Leprince-Wang, Y., Yacoubi-Ouslim, A., and Wang, G.Y.: Structure study of electrodeposited ZnO nanowires. Microelectron. J. 36, 625 (2005).
20.Lai, M. and Riley, D.J.: Templated electrosynthesis of zinc oxide nanorods. Chem. Mater. 18, 2233 (2006).
21.Leprince-Wang, Y., Wang, G.Y., Zhang, X.Z., and Yu, D.P.: Study on the microstructure and growth mechanism of electrochemical deposited ZnO nanowires. J. Cryst. Growth 287, 89 (2006).
22.Sima, M., Enculescu, I., Sima, M., Enache, M., Vasile, E., and Ansermet, J-P.: ZnO:Mn:Cu nanowires prepared by template method. Phys. Status Solidi B 244, 1522 (2007).
23.Ramirez, D., Pauporte, T., Gomez, H., and Lincot, D.: Electrochemical growth of ZnO nanowires inside nanoporous alumina templates. A comparison with metallic Zn nanowires growth. Phys. Status Solidi A 205, 2371 (2008).
24.Chou, S., Cheng, F., and Chen, J.: Electrochemical deposition of Ni(OH)2 and Fe-doped Ni(OH)2 tubes. Eur. J. Inorg. Chem. 4035 (2005).
25.Miao, Z., Xu, D., Ouyang, J., Guo, G., Zhao, X., and Tang, Y.: Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2(7), 717 (2002).
26.Bort, H., Jüttner, K., Lorenz, W.J., Staitkov, G., and Budevski, E.: Underpotential-overpotential transition phenomena in metal-deposition processes. Electrochim. Acta 28, 985 (1983).
27.Cherevko, S., Fu, J., Kulyk, N., Cho, S.M., Haam, S., and Chung, C.-H.: Electrodeposition of palladium nanotube and nanowire arrays. J. Nanosci. Nanotechnol. 9, 3154 (2009).
28.Tena-Zaera, R., Elias, J., Lévy-Clément, C., Mora-Seró, I., Luo, Y., and Bisquert, J.: Electrodeposition and impedance spectroscopy characterization of ZnO nanowire arrays. Phys. Status Solidi A 205, 2345 (2008).
29.Konishi, Y., Motoyama, M., Matsushima, H., Fukunaka, Y., Ishii, R., and Ito, Y.: Electrodeposition of Cu nanowire arrays with a template. J. Electroanal. Chem. 599, 149 (2003).
30.Motoyama, M., Fukunaka, Y., Sakka, T., and Ogata, Y.H.: Initial stages of electrodeposition of metal nanowires in nanoporous templates. Electrochim. Acta 53, 205 (2007).
31.Maas, M.G., Rodijk, E.J.B., Maijenburg, W., ten Elshof, J.E., and Blank, D.H.A.: Photocatalytic segmented nanowires and single-step iron oxide nanotube synthesis: Templated electrodeposition as all-round tool’ in Multifunction at the Nanoscale through Nanowires, edited by Nielsch, K., Fontcuberta i Morral, A., Holt, J.K., and Thompson, C.V. (Mater. Res. Soc. Symp. Volume 1206E, Warrendale, PA, 2010), 1206-M01–08.
32.Gupta, M., Pinisetty, D., Flake, J.C., and Spivey, J.J.: Pulse electrodeposition of Cu–ZnO and Mn–Cu–ZnO nanowires. J. Electrochem. Soc. 157, D473 (2010).
33.Gota, S., Moussy, J.-B., Henriot, M., Guittet, M.-J., and Gautier-Soyer, M.: Atomic-oxygen-assisted MBE growth of Fe3O4 (111) on α-Al2O3 (0001). Surf. Sci. 482485, 809 (2001).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 4
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 102 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th March 2018. This data will be updated every 24 hours.