Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T06:57:24.565Z Has data issue: false hasContentIssue false

Microstructure evolution with composition ratio in self-assembled WO3–BiVO4 hetero nanostructures for water splitting

Published online by Cambridge University Press:  27 June 2017

Haili Song
Affiliation:
Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China
Chao Li
Affiliation:
Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China
Chien Nguyen Van
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
Heng-Jui Liu
Affiliation:
Department of Material Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan
Ruijuan Qi
Affiliation:
Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China
Rong Huang*
Affiliation:
Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China; and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
Ying-Hao Chu
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
Chun-Gang Duan
Affiliation:
Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China; and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
*
a) Address all correspondence to this author. e-mail: rhuang@ee.ecnu.edu.cn
Get access

Abstract

A series of self-assembled WO3–BiVO4 nanostructured thin films with 17, 25, 50, 67, and 100 mol% WO3 were grown on the (001) yttria-stabilized zirconia (YSZ) substrate by pulsed laser deposition method. The microstructures including crystalline phases, epitaxial relationship, interface structures, and chemical composition distributions were investigated by a combination of various electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, and X-ray energy dispersive spectroscopy. The monoclinic BiVO4 formed the matrix, in which WO3 nanopillars were embedded with specific epitaxial relationships. In BiVO4-rich sample, orthorhombic Bi2WO6 was formed. However, metastable hexagonal WO3 phase and orthorhombic WO3 phase coexisted in other composite samples. The thin amorphous layer at the film/substrate interface indicated that the mismatch strain between films and substrate is released. The hydrostatic tensile strain due to thermal expansion mismatch between BiVO4 and WO3 as well as the diffusion of Bi into the WO3 stabilized the metastable h-WO3. A WO3–BiVO4 pseudobinary phase diagram was proposed based on the magnitude of the thermal expansion mismatch and the distance of Bi diffusion, which can be applied to design the microstructures of WO3–BiVO4 heterojunctions and optimize their photoelectrochemical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Sung-Yoon Chung

References

REFERENCES

Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 3738 (1972).Google Scholar
Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., and Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 64466473 (2010).Google Scholar
Maedaa, K.: Photocatalytic water splitting using semiconductor particles: History an recent developments. J. Photochem. Photobiol., C 12, 237268 (2011).Google Scholar
Chatten, R., Chadwick, A.V., Rougier, A., and Lindan, P.J.D.: The oxygen vacancy in crystal phases of WO3 . J. Phys. Chem. B 109, 31463156 (2005).Google Scholar
Cooper, J.K., Gul, S., Toma, F.M., Chen, L., Glans, P-A., Guo, J., Ager, J.W., Yano, J., and Sharp, I.D.: Electronic structure of monoclinic BiVO4 . Chem. Mater. 26, 53655373 (2014).Google Scholar
Hong, S.J., Lee, S., Jang, J.S., and Lee, J.S.: Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 4, 1781 (2011).Google Scholar
Zhang, K., Shi, X.J., Kim, J.K., and Park, J.H.: Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers. Phys. Chem. Chem. Phys. 14, 1111911124 (2012).Google Scholar
Su, J., Guo, L., Bao, N., and Grimes, C.A.: Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11, 19281933 (2011).Google Scholar
Park, Y., McDonald, K.J., and Choi, K.S.: Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42, 23212337 (2013).CrossRefGoogle ScholarPubMed
Abdi, F.F., Savenije, T.J., May, M.M., Dam, B., and van de Krol, R.: The origin of slow carrier transport in BiVO4 thin film photoanodes: A time-resolved microwave conductivity study. J. Phys. Chem. Lett. 4, 27522757 (2013).Google Scholar
Pihosh, Y., Turkevych, I., Mawatari, K., Asai, T., Hisatomi, T., Uemura, J., Tosa, M., Shimamura, K., Kubota, J., Domen, K., and Kitamori, T.: Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting. Small 10, 36923699 (2014).Google Scholar
Rao, P.M., Cai, L., Liu, C., Cho, I.S., Lee, C.H., Weisse, J.M., Yang, P., and Zheng, X.: Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 14, 10991105 (2014).Google Scholar
Shi, X., Choi, I.Y., Zhang, K., Kwon, J., Kim, D.Y., Lee, J.K., Oh, S.H., Kim, J.K., and Park, J.H.: Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat. Commun. 5, 4775 (2014).CrossRefGoogle ScholarPubMed
Pihosh, Y., Turkevych, I., Mawatari, K., Uemura, J., Kazoe, Y., Kosar, S., Makita, K., Sugaya, T., Matsui, T., Fujita, D., Tosa, M., Kondo, M., and Kitamori, T.: Photocatalytic generation of hydrogen by core–shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci. Rep. 5, 11141 (2015).CrossRefGoogle ScholarPubMed
Van, C.N., Do, T.H., Chen, J-W., Tzeng, W-Y., Tsai, K-A., Song, H., Liu, H-J., Lin, Y.C., Chen, Y-C., Wu, C-L., Luo, C-W., Chou, W.C., Huang, R., Hsu, Y-J., and Chu, Y-H.: WO3 mesocrystal-assisted photoelectrochemical activity of BiVO4 . NPG Asia Mater. 9, e357 (2016).Google Scholar
Lebedev, O., Verbeeck, J., Van Tendeloo, G., Shapoval, O., Belenchuk, A., Moshnyaga, V., Damashcke, B., and Samwer, K.: Structural phase transitions and stress accommodation in (La0.67Ca0.33MnO3)1−x :(MgO) x composite films. Phys. Rev. B 66, 104421 (2002).Google Scholar
Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., and Ramesh, R.: Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661663 (2004).Google Scholar
Luo, H., Yang, H., Baily, S.A., Ugurlu, O., Jain, M., Hawley, M.E., McCleskey, T.M., Burrell, A.K., Bauer, E., Civale, L., Holesinger, T.G., and Jia, Q.: Self-assembled epitaxial multiferroic nanocomposite films prepared by polymer-assisted deposition. J. Am. Chem. Soc. 129, 1413214133 (2007).Google Scholar
MacManus-Driscoll, J.L., Zerrer, P., Wang, H., Yang, H., Yoon, J., Fouchet, A., Yu, R., Blamire, M.G., and Jia, Q.: Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314320 (2008).Google Scholar
Chen, A., Bi, Z., Jia, Q., MacManus-Driscoll, J.L., and Wang, H.: Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films. Acta Mater. 61, 27832792 (2013).CrossRefGoogle Scholar
MacManus-Driscoll, J.L.: Self-assembled heteroepitaxial oxide nanocomposite thin film structures: Designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 20352045 (2010).Google Scholar
Winterbottom, W.L.: Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metall. 15, 303310 (1967).Google Scholar
Zheng, H., Straub, F., Zhan, Q., Yang, P-L., Hsieh, W-K., Zavaliche, F., Chu, Y-H., Dahmen, U., and Ramesh, R.: Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 27472752 (2006).Google Scholar
Liu, H.J., Liang, W.I., Chu, Y.H., Zheng, H.M., and Ramesh, R.: Self-assembled vertical heteroepitaxial nanostructures: From growth to functionalities. MRS Commun. 4, 3144 (2014).Google Scholar
Zhang, W., Chen, A., Bi, Z., Jia, Q., MacManus-Driscoll, J.L., and Wang, H.: Interfacial coupling in heteroepitaxial vertically aligned nanocomposite thin films: From lateral to vertical control. Curr. Opin. Solid State Mater. Sci. 18, 618 (2014).CrossRefGoogle Scholar
Shuk, P., Wiemhofer, H-D., Guth, U., Gopel, W., and Greenblatt, M.: Oxide ion conducting solid electrolytes based on Bi2O3 . Solid State Ionics 89, 179196 (1996).Google Scholar
Drache, M., Roussel, P., and Wignacour, J-P.: Structures and oxide mobility in Bi–Ln–O materials: Heritage of Bi2O3 . Chem. Rev. 107, 8096 (2006).CrossRefGoogle Scholar
Berglund, S.P., Rettie, A.J., Hoang, S., and Mullins, C.B.: Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation. Phys. Chem. Chem. Phys. 14, 70657075 (2012).Google Scholar
Luo, W., Wang, J., Zhao, X., Zhao, Z., Li, Z., and Zou, Z.: Formation energy and photoelectrochemical properties of BiVO4 after doping at Bi3+ or V5+ sites with higher valence metal ions. Phys. Chem. Chem. Phys. 15, 10061013 (2013).Google Scholar
Rosen, C., Banks, E., and Post, B.: The thermal expansion and phase transitions of WO3 . Acta Crystallogr. 9, 475476 (1955).Google Scholar
Waskowska, A., Pietraszko, A., and Lukaszewicz, K.: BiVO4: X-ray diffraction study of the thermal expansion. Ferroelectrics 79, 131134 (1988).CrossRefGoogle Scholar
Zheng, H., Ou, J.Z., Strano, M.S., Kaner, R.B., Mitchell, A., and Kalantar-zadeh, K.: Nanostructured tungsten oxide—Properties, synthesis, and application. Adv. Funct. Mater. 21, 21752196 (2011).CrossRefGoogle Scholar
Huang, Z.F., Song, J., Pan, L., Zhang, X., Wang, L., and Zou, J.J.: Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27, 53095327 (2015).Google Scholar
Gerand, B., Nowogrocki, G., Guenot, J., and Figlarz, M.: Structural study of a new hexagonal form of tungsten trioxide. J. Solid State Chem. 29, 429434 (1979).Google Scholar
Kalhori, H., Porter, S.B., Esmaeily, A.S., Coey, M., Ranjbar, M., and Salamati, H.: Morphology and structural studies of WO3 films deposited on SrTiO3 by pulsed laser deposition. Appl. Surf. Sci. 390, 4349 (2016).CrossRefGoogle Scholar
Ramana, C.V., Utsunomiya, S., Ewing, R.C., Julien, C.M., and Becker, U.: Structural stability and phase transitions in WO3 thin films. J. Phys. Chem. B 110, 1043010435 (2006).CrossRefGoogle ScholarPubMed
Szilágyi, I.M., Madarász, J., Pokol, G., Király, P., Tárkányi, G., Saukko, S., Mizsei, J., Tóth, A.L., Szabó, A., and Varga-Josepovits, K.: Stability and controlled composition of hexagonal WO3 . Chem. Mater. 20, 41164125 (2008).Google Scholar
Ju, P., Wang, P., Li, B., Fan, H., Ai, S., Zhang, D., and Wang, Y.: A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity. Chem. Eng. J. 236, 430437 (2014).Google Scholar
Gui, M-S., Zhang, W-D., Chang, Y-Q., and Yu, Y-X.: One-step hydrothermal preparation strategy for nanostructured WO3/Bi2WO6 heterojunction with high visible light photocatalytic activity. Chem. Eng. J. 197, 283288 (2012).Google Scholar