Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T08:11:06.258Z Has data issue: false hasContentIssue false

The microstructure of scale formed by oxynitriding of Ti and exhibiting significant apatite-forming ability

Published online by Cambridge University Press:  10 March 2016

Masami Hashimoto*
Affiliation:
Materials Research and Development Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Aichi, Japan
Satoshi Kitaoka
Affiliation:
Materials Research and Development Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Aichi, Japan
Shunsuke Muto
Affiliation:
Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan
Kazuyoshi Tatsumi
Affiliation:
Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan
Yoshihiro Obata
Affiliation:
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan
*
a) Address all correspondence to this author. e-mail: masami@jfcc.or.jp
Get access

Abstract

A scale formed by heat treatment of Ti in a nitrogen atmosphere containing oxygen at an extremely low partial pressure exhibited an exceptional degree of hydroxyapatite (HAp) formation in a simulated body fluid. Scanning transmission electron microscopy and electron energy loss spectroscopy indicated that the subsurface of this scale was composed of nitrogen doped rutile-type TiO2. The N-K edge energy-loss near edge structure spectrum of this layer in conjunction with the theoretical spectra of possible compounds obtained using the augmented plane wave plus local orbital band method suggested that oxygen sites were replaced by two nitrogens, resulting in an effective charge of +2. The enhanced HAp forming ability of this scale is likely related to the positively charged surface induced by the presence of N. Conversely, the subsurface scale formed by heat treatment in air, in which N is not found, leads to much slower HAp coverage, believed to be related to the lack of surface charge.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, H.M., Miyaji, F., Kokubo, T., and Nakamura, T.: Preparation of bioactive Ti and its alloy via simple chemical surface treatment. J. Biomed. Mater. Res. 32, 409 (1996).3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Kokubo, T., Pattanayak, D.K., Yamaguchi, S., Takadama, H., Matsushita, T., Kawai, T., Takemoto, M., Fujibayashi, S., and Nakamura, T.: Positively charged bioactive Ti metal prepared by simple chemical and heat treatments. J. R. Soc. Interface 7, 503 (2010).CrossRefGoogle ScholarPubMed
Kawai, T., Kizuki, T., Takadama, H., Matsushita, T., Unuma, H., Nakamura, T., and Kokubo, T.: Apatite formation on surface titanate layer with different Na content on Ti metal. J. Ceram. Soc. Jpn. 118, 19 (2011).CrossRefGoogle Scholar
Kawashita, M., Matsui, N., Miyazaki, T., and Kanetaka, H.: Effect of autoclave and hot water treatments on surface structure and in vitro apatite-forming ability of NaOH- and heat-treated bioactive titanium metal. Mater. Trans. 54, 811 (2013).CrossRefGoogle Scholar
Shozui, T., Tsuru, K., Hayakawa, S., and Osaka, A.: Enhancement of in vitro apatite-forming ability of thermally oxidized titanium surfaces by ultraviolet irradiation. J. Ceram. Soc. Jpn. 116, 530 (2008).CrossRefGoogle Scholar
Wang, X.X., Yan, W., Hayakawa, S., Tsuru, K., and Osaka, A.: Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials 24, 4631 (2003).CrossRefGoogle Scholar
Uetsuki, K., Kaneda, H., Shirosaki, Y., Hayakawa, S., and Osaka, A.: Effects of UV-irradiation on in vitro apatite-forming ability of TiO2 layers. Mater. Sci. Eng., B 173, 213 (2010).CrossRefGoogle Scholar
Xie, Y., Liu, X., Huang, A., Ding, C., and Chu, P.K.: Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation. Biomaterials 26, 6129 (2005).CrossRefGoogle ScholarPubMed
Hashimoto, M., Kashiwagi, K., and Kitaoka, S.: A nitrogen doped TiO2 layer on Ti metal for the enhanced formation of apatite. J. Mater. Sci. Mater. Med. 22, 2013 (2011).CrossRefGoogle ScholarPubMed
Hashimoto, M., Hayashi, K., and Kitaoka, S.: Enhanced apatite formation on Ti metal heated in ${P_{{{\rm{O}}_2}}}$ -controlled nitrogen atmosphere. Mater. Sci. Eng., C 33, 4155 (2013).CrossRefGoogle ScholarPubMed
Muto, S., Yoshida, T., and Tatsumi, K.: Diagnostic nano-analysis of materials properties by multivariate curve resolution applied to spectrum images by S/TEM-EELS. Mater. Trans. 50, 964 (2009).CrossRefGoogle Scholar
Muto, S., Sasano, Y., Tatsumi, K., Sasaki, T., Horibuchi, K., Takeuchi, Y., and Ukyo, Y.: Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries II. Diagnostic analysis by electron microscopy and spectroscopy. J. Electrochem. Soc. 156, A371 (2009).CrossRefGoogle Scholar
Muto, S., Tatsumi, K., Sasaki, T., Kondo, H., Ohsuna, T., Horibuchi, K., and Takeuchi, Y.: Mapping of heterogeneous chemical states of lithium in a LiNiO2-based active material by electron energy-loss spectroscopy. Electrochem. Solid State Lett. 13, A115 (2010).CrossRefGoogle Scholar
Kojima, Y., Muto, S., Tatsumi, K., Kondo, H., Oka, H., Horibuchi, K., and Ukyo, Y.: Degradation analysis of a Ni-based layered positive-electrode active material cycled at elevated temperatures studied by scanning transmission electron microscopy and electron energy-loss spectroscopy. J. Power Sources 196, 7721 (2011).CrossRefGoogle Scholar
Muto, S., Tatsumi, K., Kojima, Y., Oka, H., Kondo, H., Horibuchi, K., and Ukyo, Y.: Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods. J. Power Sources 205, 449 (2012).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005).Google Scholar
Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., and Luitz, J.: Wien2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001). ISBN: 3-9501031-1-2.Google Scholar
Akiba, K., Ueda, M., Kawamura, K., and Maruyama, T.: Quantitative prediction of voids formation in a growing nickel oxide scale at 1373 K. Mater. Trans. 48, 2753 (2007).CrossRefGoogle Scholar
Akiba, K., Ueda, M., Kawamura, K., and Maruyama, T.: Quantitative prediction of voids formation in a growing cobaltous oxide scale at 1373 K. Mater. Trans. 48, 2997 (2007).CrossRefGoogle Scholar
Janotti, A., Franchini, C., Varley, J.B., Kresse, G., and Van de Walle, C.G.: Dual behavior of excess electrons in rutile TiO2 . Phys. Status Solidi RRL 7, 199 (2013).CrossRefGoogle Scholar
Brant, A.T., Giles, N.C., Yang, S., Sarker, M.A.R., Watauchi, S., Nagao, M., Tanaka, I., Tryk, D.A., Manivannan, A., and Halliburton, L.E.: Ground state of the singly ionized oxygen vacancy in rutile TiO2 . J. Appl. Phys. 114, 113702 (2013).CrossRefGoogle Scholar
Varley, J.B., Janotti, A., and Van de Walle, C.G.: Mechanism of visible-light photocatalysis in nitrogen-doped TiO2 . Adv. Mater. 23, 2343 (2011).CrossRefGoogle Scholar
Kihn, Y., Mirguet, C., and Calmels, L.: EELS studies of Ti-bearing materials and ab initio calculations. J. Electron Spectrosc. Relat. Phenom. 143, 117 (2005).CrossRefGoogle Scholar
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).CrossRefGoogle ScholarPubMed
Asahi, R. and Morikawa, T.: Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis. Chem. Phys. 339, 57 (2007).CrossRefGoogle Scholar
Yoshida, T., Muto, S., and Wakabayashi, J.: Depth-resolved EELS and chemical state mapping of N+-implanted TiO2 photocatalyst. Mater. Trans. 48, 2580 (2007).CrossRefGoogle Scholar
Yoshida, T. and Muto, S.: Chemical state analyses of nitrogen implanted titanium dioxide photocatalyst by means of XAFS, TEM and EELS. AMTC Lett. 1, 118 (2008).Google Scholar
Takahashi, I., Payne, D.J., Palgrave, R.G., and Egdell, R.G.: High resolution X-ray photoemission study of nitrogen doped TiO2 rutile single crystals. Chem. Phys. Lett. 454, 314 (2008).CrossRefGoogle Scholar
Lee, S., Cho, I.S., Lee, D.K., Kim, D.W., Noh, T.H., Kwak, C.H., Park, S., Hong, K.S., Lee, J.K., and Jung, H.S.: Influence of nitrogen chemical states on photocatalytic activities of nitrogen-doped TiO2 nanoparticles under visible light. J. Photochem. Photobiol., A 213, 129 (2010).CrossRefGoogle Scholar
Xing, M., Zhang, J., and Chen, F.: New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light. Appl. Catal., B 89, 563 (2009).CrossRefGoogle Scholar
Wang, Y., Feng, C., Zhang, M., Yang, J., and Zhang, Z.: Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen. Appl. Catal., B 100, 84 (2010).CrossRefGoogle Scholar
Chen, Y., Cao, X., Lin, B., and Gao, B.: Origin of the visible-light photoactivity of NH3-treated TiO2: Effect of nitrogen doping and oxygen vacancies. Appl. Surf. Sci. 264, 845 (2013).CrossRefGoogle Scholar