Skip to main content
×
Home
    • Aa
    • Aa

Migration of point defects and a defect pair in zinc oxide using the dimer method

  • Dong Chen (a1), Fei Gao (a2), Mingdong Dong (a3) and Bo Liu (a4)
Abstract
Abstract

The migration mechanism and the minimum energy path of vacancies, interstitials, and an interstitial–vacancy pair in zinc oxide have been studied by the dimer method. The in-plane and out-of-plane migrations of zinc and oxygen vacancies are anisotropic. The kick-out mechanism is energetically preferred to zinc and oxygen interstitials that can easily migrate through the ZnO crystal lattice. In addition, the migration process of an interstitial–vacancy pair as a complex of an octahedral oxygen interstitial and a zinc vacancy is dominated by an oxygen interstitial/zinc vacancy successive migration. The energy barriers indicate that the existence of oxygen interstitial in the defect pair can promote the mobility of zinc vacancy, whereas the migration of oxygen interstitial is slowed down due to the presence of zinc vacancy. In the end, we show a possible migration path of the interstitial–vacancy pair that can be dissociated through a set of displacement movements.

Copyright
Corresponding author
a)Address all correspondence to these author. e-mail: fei.gao@pnl.gov,
b)e-mail: boliu@henu.edu.cn.
References
Hide All
1.Dietl T. and Ohno H.: Ferromagnetic III–V and II–VI Semiconductors. MRS Bull. 28, 714 (2003).
2.Kamilla S.K. and Basu S.: New semiconductor materials for magnetoelectronics at room temperature. Bull. Mater. Sci. 25, 541 (2002).
3.Oba F., Choi M., Togo A., and Tanaka I.: Point defects in ZnO: An approach from first principles. Sci. Technol. Adv. Mater. 12, 034302 (2011).
4.Nogueira M., Sabioni A., and Ferraz W.: Zinc self-diffusion in ZnO. Defect Diffus. Forum 237240, 163 (2005).
5.Nogueira M.A.d.N., Ferraz W.B., and Sabioni A.C.S.: Diffusion of the 65Zn radiotracer in ZnO polycrystalline ceramics. Mater. Res. 6, 167 (2003).
6.Look D.C., Claflin B., Alivov Y.I., and Park S.J.: The future of ZnO light emitters. Phys. Status Solidi A 201, 2203 (2004).
7.Vlasenko L.S. and Watkins G.D.: Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K. Phys. Rev. B 72, 035203 (2005).
8.Vlasenko L.S.: Magnetic resonance studies of intrinsic defects in ZnO: Oxygen vacancy. Appl. Magn. Res. 39, 103 (2010).
9.Janotti A. and Van de Walle C.G.: New insights into the role of native point defects in ZnO. J. Cryst. Growth 287, 58 (2006).
10.Erhart P. and Albe K.: Diffusion of zinc vacancies and interstitials in zinc oxide. Appl. Phys. Lett. 88, 201918 (2006).
11.Erhart P. and Albe K.: First-principles study of migration mechanisms and diffusion of oxygen in zinc oxide. Phys. Rev. B 73, 115207 (2006).
12.Henkelman G. and Jónsson H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).
13.Henkelman G. and Jónsson H.: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010 (1999).
14.Munro L.J. and Wales D.J.: Defect migration in crystalline silicon. Phys. Rev. B 59, 3969 (1999).
15.Gao F., Henkelman G., Weber W.J., Corrales L.R., and Jónsson H.: Finding possible transition states of defects in silicon-carbide and alpha-iron using the dimer method. Nucl. Instrum. Methods Phys. Res., Sect. B 202, 1 (2003).
16.Chen D., Hu W.Y., Gao F., Deng H.Q., and Sun L.X.: Tungsten cluster migration on nanoparticles: Minimum energy pathway and migration mechanism. Eur. Phys. J. B 80, 31 (2011).
17.Chen D., Gao F., Hu W.Y., Hu S.Y., Terentyev D., Heinisch H.L., Henager C.H., and Khaleel M.A.: Migration of Cr-vacancy clusters and interstitial Cr in α-Fe using the dimer method. Phys. Rev. B 81, 64101 (2010).
18.Smith W. and Forester T.R.: DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package. J. Mol. Graphics 14, 136 (1996).
19.Kulkarni A.J., Zhou M., and Ke F.J.: Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16, 2749 (2005).
20.Binks D.J. and Grimes R.W.: Incorporation of monovalent ions in ZnO and their influence on varistor degradation. J. Am. Ceram. Soc. 76, 2370 (1993).
21.Dai L., Cheong W.C.D., Sow C.H., Lim C.T., and Tan V.B.C.: Molecular dynamics simulation of ZnO Nanowires: Size effects, defects, and super ductility. Langmuir 26, 1165 (2009).
22.Janotti A. and Van de Walle C.G.: Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007).
23.Wardle M.G., Goss J.P., and Briddon P.R.: Theory of Fe, Co, Ni, Cu, and their complexes with hydrogen in ZnO. Phys. Rev. B 72, 155108 (2005).
24.Huang G., Wang C., and Wang J.: First-principles study of diffusion of oxygen vacancies and interstitials in ZnO. J. Phys. Condens. Matter 21, 195403 (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 90 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.