Skip to main content Accessibility help
×
Home

Models for nanoindentation of compliant films on stiff substrates

  • Yang Li (a1), Pavan Valavala (a2), Supinda Watcharotone (a2) and L. Catherine Brinson (a3)

Abstract

Nanoindentation is an effective approach for measuring mechanical properties of nanoscale films coated on substrates, yet results obtained through the classic Oliver–Pharr model require additional consideration due to the existence of a “substrate effect” when the film is much more compliant than the substrate. In this study, different models for removing this substrate effect are compared, with focus on the Gao model, the Saha–Nix model, and the Hay model and the use of a direct finite element (FE) approach is discussed. Validity of these models is examined using load–displacement data obtained from simulated indentation of an elastic–plastic film in FEs. It is found that the performance of the analytical models varies significantly with different testing parameters, including ratio between film modulus and substrate modulus (E f/E s), indenting ratio (h max/film thickness), and yield strain. Choices of using a nanoindentation model to process experimental data should be made according to estimated indentation depth and modulus difference between film and substrate. An example of applying substrate removal models to experimental data is also shown.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: cbrinson@northwestern.edu

References

Hide All
1. Hertz, H.: On the contact of elastic solids. J Reine Angew Math. 92, 16 (1881).
2. Hertz, H.: On hardness. Verh. Ver. Bedorderung Gewerbe Fleisses. 61, (1882).
3. Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3(1), 11 (1965).
4. King, R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23(12), 8 (1987).
5. Pharr, G.M., Oliver, W.C., and Brotzen, F.R.: On the generality of the relationship among contact stiffness, contact area, and elastic-modulus during indentation. J. Mater. Res. 7(3), 613 (1992).
6. Doerner, M.F. and Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 9 (1986).
7. Hay, J. and Crawford, B.: Measuring substrate-independent modulus of thin films. J. Mater. Res. 26(6), 727 (2011).
8. Saha, R. and Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 16 (2002).
9. Watcharotone, S., Wood, C.D., Friedrich, R., Chen, X.Q., Qiao, R., Putz, K., and Brinson, L.C.: Interfacial and substrate effects on local elastic properties of polymers using coupled experiments and modeling of nanoindentation. Adv. Eng. Mater. 13(5), 400 (2011).
10. Wei, Z., Zhang, G., Chen, H., Luo, J., Liu, R., and Guo, S.: A simple method for evaluating elastic modulus of thin films by nanoindentation. J. Mater. Res. 24(3), 801 (2009).
11. Gao, H., Chiu, C., and Lee, J.: Elastic contact versus indentation modeling of multi-layered materials. Int. J. Solids Struct. 29(20), 22 (1992).
12. Mencik, J., Munz, D., Quandt, E., Weppelmann, E.R., and Swain, M.V.: Determination of elastic modulus of thin layers using nanoindentation. J. Mater. Res. 12(9), 10 (1997).
13. Li, H. and Vlassak, J.J.: Determining the elastic modulus and hardness of an ultra-thin film on a substrate using nanoindentation. J. Mater. Res. 24(3), 1114 (2009).
14. Zhou, B. and Prorok, B.C.: A new paradigm in thin film indentation. J. Mater. Res. 25(9), 1671 (2010).
15. Miyake, K., Satomi, N., and Sasaki, S.: Elastic modulus of polystyrene film from near surface to bulk measured by nanoindentation using atomic force microscopy. Appl. Phys. Lett. 89(3), (2006).
16. Chen, W.T.: Computation of stresses and displacements in a layered elastic medium. Int. J. Eng. Sci. 9, 25 (1971).
17. Chen, W.T. and Engel, P.A.: Impact and contact stress analysis in Multilayer Media. Int. J. Solids Struct. 8, 25 (1972).
18. Yu, H.Y., Sanday, S.C., and Rath, B.B.: The effect of substrate on the elastic properties of films determined by the indentation test—axisymmetrical boussinesq problem. J. Mech. Phys. Solids 38(6), 745 (1990).
19. Zhao, M., Chen, X., Xiang, Y., Vlassak, J.J., Lee, D., Ogasawara, N., Chiba, N., and Gan, Y.X.: Measuring elastoplastic properties of thin films on an elastic substrate using sharp indentation. Acta Mater. 55(18), 6260 (2007).
20. Da Silva Botelho, T., Progri, R., Inglebert, G., and Robbe-Valloire, F.: Analytical and experimental elastoplastic spherical indentations of a layered half-space. Mech. Mater. 40(10), 771 (2008).
21. Chen, W.W., Zhou, K., Keer, L.M., and Wang, Q.J.: Modeling elasto-plastic indentation on layered materials using the equivalent inclusion method. Int. J. Solids Struct. 47(20), 2841 (2010).
22. Polonsky, I.A. and Keer, L.M.: A fast and accurate method for numerical analysis of elastic layered contacts. J. Tribol. 122, 6 (2000).
23. Liu, S., Wang, Q., and Liu, G.: A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear 243(1–2), 11 (2000).
24. Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 20 (1992).
25. Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 18 (2004).
26. Pharr, G.M., Strader, J.H., and Oliver, W.C.: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24(3), 653 (2009).
27. Hay, J.C., Bolshakov, A., and Pharr, G.M.: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14(6), 2296 (1999).
28. Pharr, G.M. and Oliver, W.C.: Measurement of thin-film mechanical-properties using nanoindentation. MRS Bull. 17(7), 28 (1992).
29. Chen, K.S., Chen, T.C., and Ou, K.S.: Development of semi-empirical formulation for extracting materials properties from nanoindentation measurements: Residual stresses, substrate effect, and creep. Thin Solid Films 516(8), 1931 (2008).
30. Bolshakov, A. and Pharr, G.M.: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 13(4), 10 (1998).
31. Stone, D.S., Yoder, K.B., and Sproul, W.D.: Hardness and elastic modulus of TiN based on continuous indentation technique and new correlation. J. Vac. Sci. Technol., A 9(4), 5 (1991).
32. Neuber, H.: Kerbspannungslehve (Springer Berlin, Berlin, 1946).
33. Xu, H. and Pharr, G.: An improved relation for the effective elastic compliance of a film/substrate system during indentation by a flat cylindrical punch. Scr. Mater. 55(4), 315 (2006).
34. Song, H.: Selected Mechanical Problems in Load- and Depth-sensing Indentation Testing (Rice University, 1999).
35. Cheng, Y.T. and Cheng, C.M.: Scaling relationships in conical indentation of elastic perfectly plastic solids. Int. J. Solids Struct. 36(8), 1231 (1999).
36. Knapp, J.A., Follstaedt, D.M., Myers, S.M., Barbour, J.C., and Friedmann, T.A.: Finite-element modeling of nanoindentation. J. Appl. Phys. 85(3), 1460 (1999).
37. Chen, X. and Vlassak, J.J.: Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res. 16(10), 2974 (2001).
38. Zeng, K.Y. and Shen, L.: A new analysis of nanoindentation load–displacement curves. Philos. Mag. A 82(10), 2223 (2002).
39. Xu, Z.H. and Rowcliffe, D.: Finite element analysis of substrate effects on indentation behaviour of thin films. Thin Solid Films 447, 399 (2004).
40. Chollacoop, N., Li, L., and Gouldstone, A.: Errors in resolved modulus during nano-indentation of hard films on soft substrates: A computational study. Mater. Sci. Eng., A 423(1–2), 36 (2006).
41. Tsui, T.Y., Vlassak, J., and Nix, W.D.: Indentation plastic displacement field: Part I. The case of soft films on hard substrates. J. Mater. Res. 14(6), 2196 (1999).
42. Hamming, L.M., Qiao, R., Messersmith, P.B., and Brinson, L.C.: Effects of dispersion and interfacial modification on the macroscale properties of TiO(2) polymer-matrix nanocomposites. Compos Sci Technol. 69(11–12), 1880 (2009).
43. Qiao, R., Deng, H., Putz, K.W., and Brinson, L.C.: Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 49(10), 740 (2011).
44. Deng, H., Liu, Y., Gai, D.H., Dikin, D.A., Putz, K.W., Chen, W., Brinson, L.C., Burkhart, C., Poldneff, M., Jiang, B., and Papakonstantopoulos, G.J.: Utilizing real and statistically reconstructed microstructures for the viscoelastic modeling of polymer nanocomposites. Compos. Sci. Technol. 72(14), 1725 (2012).
45. Torkelson, J.M. and Ellison, C.J.: The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2(10), 695 (2003).
46. Rittigstein, P., Priestley, R.D., Broadbelt, L.J., and Torkelson, J.M.: Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 6(4), 278 (2007).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed