Skip to main content Accessibility help

Modified embedded-atom method interatomic potential for the Fe–Pt alloy system

  • Jaesong Kim (a1), Yangmo Koo (a1) and Byeong-Joo Lee (a1)


A semi-empirical interatomic potential formalism, the modified embedded atom method (MEAM), has been applied to obtain an interatomic potential for the Fe–Pt alloy system, based on the previously developed potentials for pure Fe and Pt. The potential can describe basic physical properties of the alloys (lattice parameter, bulk modulus, stability of individual phases, and order/disorder transformations), in good agreement with experimental information. The procedure for the determination of potential parameter values and comparisons between the present calculation and experimental data or high level calculation are presented. The applicability of the potential to atomistic studies to investigate structural evolution of Fe50Pt50 alloy thin films during post-annealing is also discussed.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Ouchi, K.: Recent advancement in perpendicular magnetic recording. IEEE Trans. Mag. 37, 1217 (2001).
2.Weller, D., Moser, A., Folks, L., Best, M.E., Lee, W., Toney, M.F., Schwickert, M., Thiele, J-U. and Doerner, M.F.: High Ku materials approach to 100Gbit/in2. IEEE Trans. Mag. 36, 10 (2000).
3.Coffey, K.R., Parker, M.A. and Howard, J.K.: High anisotropy L10 thin film for longitudinal recording. IEEE Trans. Mag. 31, 2737 (1995).
4.Suzuki, T., Honda, N. and Ouchi, K.: Fe–Pt media for perpendicular magnetic recording. IEEE Trans. Mag. 35, 2748 (1999).
5.Jeong, S-K., McHenry, M.E. and Laughlim, D.E.: Growth and characterization of L10 FePt and CoPt 〈001〉 textured polycrystalline thin films. IEEE Trans. Mag. 37, 1309 (2001).
6.Huang, Y.H., Okumura, H. and Hadjipanayis, G.C.: CoPt and FePt nanowires by electrodeposition. J. Appl. Phys. 91, 6869 (2002).
7.Christodoulides, J.A., Zhang, Y., Hadjipanayis, G.C. and Fountzoulas, C.: CoPt and FePt nanoparticles for high-density recording media. IEEE Trans. Mag. 36, 2333 (2000).
8.Sato, K., Bian, B. and Hirotsu, Y.: Fabrication of oriented L10-FePt and FePd nanoparticles with large coercivity. J. Appl. Phys. 91, 8516 (2002).
9.Zeng, H., Yan, M.L., Powers, N. and Sellmyer, D.J.: Orientation-controlled nonepitaxial L10 CoPt and FePt films. Appl. Phys. Lett. 80, 2350 (2002).
10.Lauglin, D.E., Kumar, S., Peng, Y. and Roy, A.G.: Engineering the microstructure of thin films for perpendicular recording. IEEE Trans. Mag. 41, 719 (2005).
11.Nishimura, K., Takahashi, K., Uchida, H. and Inoue, M.: Effects of third elements (Ag, B, Cu, Ir) addition and high Ar gas pressure on L10 FePt films. J. Magn. Magn. Mat. 272, 2189 (2004).
12.Bian, B., Laughlin, D.E., Sato, K. and Hirotsu, Y.: Synthesis and structure of isolated L10 FePt particles. IEEE Trans. Mag. 36, 3021 (2000).
13.Podgórny, M.: Electronic structure of the ordered phases of Pt–Fe alloys. Phys. Rev. B 43, 11300 (1991).
14.Hayn, R. and Drchal, V.: Invar behavior of disordered fcc-FexPt1−x alloys. Phys. Rev. B 58, 4341 (1998).
15.Chen, Y., Iwata, S. and Mohri, T.: First principles calculation of L10-disorder phase diagram in Fe–Pt system within the first and second nearest neighbor pair interaction energies. CALPHAD 26, 583 (2003).
16.Ravindran, P., Kjekshus, A., Fjellvag, H., James, P., Nordström, L., Johansson, B. and Eriksson, O.: Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations. Phys. Rev. B 63, 144409 (2001).
17.Baskes, M.I.: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992).
18.Daw, M.S. and Baskes, M.I.: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).
19.Daw, M.S. and Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).
20.Lee, B-J. and Baskes, M.I.: Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62, 8564 (2000).
21.Lee, B-J., Baskes, M.I., Kim, H. and Cho, Y.K.: Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 64, 184102 (2001).
22.Rose, J.H., Smith, J.R., Guinea, F. and Ferrante, J.: Universal features of the equations of state of metals. Phys. Rev. B 29, 2963 (1984).
23.Baskes, M.I.: Determination of modified embedded atom method parameters for nickel. Mater. Chem. Phys. 50, 152 (1997).
24.Lee, B-J., Shim, J-H. and Baskes, M.I.: Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys. Rev. B 68, 144112 (2003).
25.Okamoto, H.: Phase Diagrams of Binary Iron Alloys; Monograph Series on Alloy Phase Diagram, Vol. 9, 1st ed. (ASM International, USA, 1993), pp. 330336.
26.Fredriksson, P. and Seetharaman, S.: Thermodynamic studies of some Fe–Pt alloys by the solid electrolyte galvanic cell method. Scand. J. Metall. 30, 258 (2001).
27.Fredriksson, P. and Sundman, B.: A thermodynamic assessment of the Fe–Pt system. CALPHAD 25, 535 (2001).
28.Ansara, I., Sundman, B. and Willemin, P.: Thermodynamic modeling of ordered phases in the Ni–Al system. Acta Metall. 36, 977 (1988).
29.Sundman, B., Fries, S.G. and Oates, W.A.: A thermodynamic assessment of the Au-Cu system. CALPHAD 22, 335 (1998).
30.Lee, B-J., Shim, J-H. and Park, H.M.: A semi-empirical atomic potential for the Fe-Cr binary system. CALPHAD 25, 527 (2001).
31.Shim, J-H., Park, S.I., Cho, Y.W. and Lee, B-J.: Modified embeddedatom method calculation for the Ni–W system. J. Mater. Res. 18, 1863 (2003).
32.Lee, B-J. and Shim, J-H.: A modified embedded atom method interatomic potential for the Cu–Ni system. CALPHAD 28, 125 (2004).
33.Lee, B-J., Wirth, B.D., Shim, J-H., Kwon, J., Kwon, S.C. and Hong, J-H.: An MEAM interatomic potential for the Fe–Cu alloy system and cascade simulation on pure Fe and Fe–Cu alloy. Phys. Rev. B 71, 184205 (2005).
34.Sumiyama, K., Shiga, M., Morioka, M. and Nakamura, Y.: Characteristic magnetovolume effects in Invar type Fe–Pt alloys. J. Phys. F: Metal Phys. 9, 1665 (1979).
35.Kim, J-S. unpublished work (Pohang University of Science and Technology, Korea, 2005).


Modified embedded-atom method interatomic potential for the Fe–Pt alloy system

  • Jaesong Kim (a1), Yangmo Koo (a1) and Byeong-Joo Lee (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed