Skip to main content Accessibility help
×
Home

Modified embedded-atom method interatomic potentials for the Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems

  • Hyun-Kyu Kim (a1), Woo-Sang Jung (a2) and Byeong-Joo Lee (a1)

Abstract

Modified embedded-atom method (MEAM) interatomic potentials for Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems have been developed based on the previously developed MEAM potentials for lower order systems. The potentials reproduce various fundamental physical properties (structural properties, elastic properties, thermal properties, and surface properties) of NbC and NbN, and interfacial energy between bcc Fe and NbC or NbN, in generally good agreement with higher-level calculations or experimental information. The applicability of the present potentials to atomic-level investigations to the precipitation behavior of complex-carbonitrides (Nb,Ti)(C,N) as well as NbC and NbN, and their effects on the mechanical properties of steels are also discussed.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: calphad@postech.ac.kr

References

Hide All
1.Isaev, E.I., Simak, S.I., Abrikosov, I.A., Ahuja, R., Vekilov, Yu.Kh., Katsnelson, M.I., Lichtenstein, A.I., Johansson, B.Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study. J. Appl. Phys. 101, 123519 (2007)
2.Isaev, E.I., Ahuja, R., Simak, S.I., Lichtenstein, A.I., Vekilov, Y.K., Johansson, B., Abrikosov, I.A.Anomalously enhanced superconductivity and ab initio lattice dynamics in transition metal carbides and nitrides. Phys. Rev. B 72, 064515 (2005)
3.Joshi, K.B., Paliwal, U.First-principles study of structural and bonding properties of vanadium carbide and niobium carbide. Phys. Scr. 80, 055601 (2009)
4.Tran, F., Laskowski, R., Blaha, P., Schwarz, K.Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional. Phys. Rev. B 75, 115131 (2007)
5.Jung, W-S., Chung, S-H., Ha, H-P., Byun, J-Y.An ab initio study of the energetics for interfaces between group V transition metal nitrides and bcc iron. Modell. Simul. Mater. Sci. Eng. 14, 479 (2006)
6.Chung, S-H., Ha, H-P., Jung, W-S., Byun, J-Y.An ab initio study of the energetics for interfaces between group V transition metal carbides and bcc iron. ISIJ Int. 46, 1523 (2006)
7.Wu, Z., Chen, X.J., Struzhkin, V.V., Cohen, R.E.Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles. Phys. Rev. B 71, 214103 (2005)
8.Chen, X.J., Struzhkin, V.V., Wu, Z., Somayazulu, M., Qian, J., Kung, S., Christensen, A.N., Zhao, Y., Cohen, R.E., Mao, H.K., Hemley, R.J.Hard superconducting nitrides. Proc. Nat. Acad. Sci. U.S.A. 102, 3198 (2005)
9.Iskandarova, I.M., Knizhnik, A.A., Potapkin, B.V., Safonov, A.A., Bagatur'yants, A.A., Fonseca, L.R.C.First-principles investigation of the electronic properties of niobium and molybdenum mononitride surfaces. Surf. Sci. 583, 69 (2005)
10.Hugosson, H.W., Eriksson, O., Jansson, U., Ruban, A.V., Souvatzis, P., Abrikosov, I.A.Surface energies and work functions of the transition metal carbides. Surf. Sci. 557, 243 (2004)
11.Hugosson, H.W., Eriksson, O., Jansson, U., Johansson, B.Phase stabilities and homogeneity ranges in 4d-transition-metal carbides: A theoretical study. Phys. Rev. B 63, 134108 (2001)
12.Amriou, T., Bouhafs, B., Aourag, H., Khelifa, B., Bresson, S., Mathieu, C.FP-LAPW investigations of electronic structure and bonding mechanism of NbC and NbN compounds. Physica B 325, 46 (2003)
13.Stampfl, C., Mannstadt, W., Asahi, R., Freeman, A.J.Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Phys. Rev. B 63, 155106 (2001)
14.Kobayashi, K.Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Jpn. J. Appl. Phys. 39, 4311 (2000)
15.Hart, G.L.W., Klein, B.M.Phonon and elastic instabilities in MoC and MoN. Phys. Rev. B 61, 3151 (2000)
16.Öğüt, S., Rabe, K.M.Polymorphism and metastability in NbN: Structural predictions from first principles. Phys. Rev. B 52, R8585 (1995)
17.Guillermet, A.F., Häglund, J., Grimvall, G.Cohesive properties of 4d-transition-metal carbides and nitrides in the NaCl-type structure. Phys. Rev. B 45, 11557 (1992)
18.Chen, J., Boyer, L.L., Krakauer, H., Mehl, M.J.Elastic constants of NbC and MoN: Instability of B 1-MoN. Phys. Rev. B 37, 3295 (1988)
19.Papaconstantopoulos, D.A., Pickett, W.E., Klein, B.M., Boyer, L.L.Electronic properties of transition-metal nitrides: The group-V and group-VI nitrides VN, NbN, TaN, CrN, MoN, and WN. Phys. Rev. B 31, 752 (1985)
20.Lee, B-J., Baskes, M.I.Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62, 8564 (2000)
21.Lee, B-J., Baskes, M.I., Kim, H., Cho, Y.K.Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 64, 184102 (2001)
22.Baskes, M.I.Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992)
23.Lee, B-J., Lee, J.W.A modified embedded atom method interatomic potential for carbon. Calphad 29, 7 (2005)
24.Lee, B-J.A modified embedded-atom method interatomic potential for the Fe–C system. Acta Mater. 54, 701 (2006)
25.Lee, B-J., Lee, T-H., Kim, S-J.A modified embedded-atom method interatomic potential for the Fe–N system: A comparative study with the Fe–C system. Acta Mater. 54, 4597 (2006)
26.Sa, I.Y., Lee, B-J.Modified embedded-atom method interatomic potentials for the Fe–Nb and Fe–Ti binary systems. Scr. Mater. 59, 595 (2008)
27.Kim, Y-M., Lee, B-J.Modified embedded-atom method interatomic potentials for the Ti–C and Ti–N binary systems. Acta Mater. 56, 3481 (2008)
28.Kim, H-K., Jung, W-S., Lee, B-J.Modified embedded-atom method interatomic potentials for the Fe–Ti–C and Fe–Ti–N ternary systems. Acta Mater. 57, 3140 (2009)
29.Rose, J.H., Smith, J.R., Guinea, F., Ferrante, J.Universal features of the equation of state of metals. Phys. Rev. B 29, 2963 (1984)
30.Baskes, M.I.Determination of modified embedded atom method parameters for nickel. Mater. Chem. Phys. 50, 152 (1997)
31.Rudy, E., Benesovsky, F., Sedlatschek, K.A study of the Nb-Mo-C system. Monatsh. Chem. 92, 841 (1961)
32.Pierson, H.O.Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications (Noyes Publications, Westwood, NJ 1996)
33.Toth, L.E.Transition Metal Carbides and Nitrides (Academic Press, New York 1971)
34.Storm, E.K.Los Alamos Scientific Laboratory Report La-2942 (The Office of Technical Services, U.S. Department of Commerce, Washington, DC 1964)
35.Huber, E.J. Jr., Head, E.L., Holley, C.E. Jr., Storms, E.K., Krikorian, N.H.The heats of combustion of niobium carbides. J. Phys. Chem. 65, 1846 (1961)
36.Storms, E.K., Krikorian, N.H.The niobium-niobium carbide system. J. Phys. Chem. 64, 1471 (1960)
37.Parkin, I.P.Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: Ionic or elemental pathways. Chem. Soc. Rev. 25, 199 (1996)
38.Teresiak, A., Kubsch, H.X-ray investigations of high-energy ball milled transition metal carbides. Nanostruct. Mater. 6, 671 (1995)
39.Huang, W., Selleby, M.Thermodynamic assessment of the Nb-W-C system. Z. Metallkd. 88, 55 (1997)
40.Lee, B-J.Thermodynamic assessment of the Fe-Nb-Ti-C-N system. Metall. Mater. Trans. A 32, 2423 (2001)
41.Christensen, A.N.Preparation and structure of stoichiometric δ-NbN. Acta Chem. Scand. Ser. A 31, 77 (1977)
42.Heger, G., Baumgartner, O.Crystal structure and lattice distortion of γ-NbNx and δ-NbNx. J. Phys. C: Solid State Phys. 13, 5833 (1980)
43.Lengauer, W., Ettmayer, P.Preparation and properties of compact cubic δ-NbN1–x. Monatsh. Chem. 117, 275 (1986)
44.Brauer, G., Kirner, H.High pressure synthesis of niobium nitrides and constitution of δ-NbN. Z. Anorg. Allg. Chem. 328, 34 (1964)
45.Mah, A.D., Gellert, N.L.Heats of formation of niobium nitride, tantalum nitride and zirconium nitride from combustion calorimetry. J. Am. Chem. Soc. 78, 3261 (1956)
46.Chase, M.W. Jr., Davies, C.A., Downey, J.R. Jr., Frurip, D.J., McDonald, R.A., Syverud, A.N.JANAF themodynamics tables 3rd ed.J. Phys. Chem. Ref. Data 14, (Suppl. 1)1616 (1985)
47.Huang, W.Thermodynamic assessment of the Nb-N system. Metall. Mater. Trans. A 27, 3591 (1996)
48.Panaioti, T.A.Ion nitriding of tantalum and niobium alloys. Met. Sci. Heat Treat. 44, 439 (2002)
49.Christensen, A.N.Preparation and crystal structure of β-Nb2N and γ-NbN. Acta Chem. Scand. Ser. A 30, 219 (1976)
50.Cost, J.R., Wert, C.A.Metal-gas equilibrium in the niobium-nitrogen terminal solid solution. Acta Metall. 11, 231 (1963)
51.Mah, A.D.Heats of formation of niobium dioxide, niobium subnitride and tantalum subnitride. J. Am. Chem. Soc. 80, 3872 (1958)
52.Gubanov, V.A., Ivanovsky, A.L., Zhukov, V.P.Electronic Structure of Refractory Carbides and Nitrides (Cambridge University Press, Cambridge, UK 1994)
53.Weber, W.Lattice dynamics of transition-metal carbides. Phys. Rev. B 8, 5082 (1973)
54.Christensen, A.N., Dietrich, O.W., Kress, W., Teuchert, W.D., Currat, R.Phonon anomalies in transition metal nitrides: δ-NbN. Solid State Commun. 31, 795 (1979)
55.Kim, J.O., Achenbach, J.D., Mirkarimi, P.B., Shinn, M., Barnett, S.A.Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy. J. Appl. Phys. 72, 1805 (1992)
56.Lee, B-J.Update of steel database Unpublished work at KTH (1999)
57.Perecherla, A., Williams, W.S.Room-temperature thermal conductivity of cemented transition-metal carbides. J. Am. Ceram. Soc. 71, 1130 (1988)
58.Holleck, H.Material selection for hard coatings. J. Vac. Sci. Technol., A 4, 2661 (1986)
59.Perrard, F., Deschamps, A., Maugis, P.Modelling the precipitation of NbC on dislocations in α-Fe. Acta Mater. 55, 1255 (2007)
60.Fujita, N., Bhadeshia, H.K.D.H., Kikuchi, M.Precipitation sequence in niobium-alloyed ferritic stainless steel. Modell. Simul. Mater. Sci. Eng. 12, 273 (2004)
61.Perrard, F., Donnadieu, P., Deschamps, A., Barges, P.TEM study of NbC heterogeneous precipitation in ferrite. Philos. Mag. 86, 4271 (2006)
62.Wei, F.G., Hara, T., Tsuzaki, K.High-resolution transmission-electron-microscopy study of crystallography and morphology of TiC precipitates in tempered steel. Philos. Mag. 84, 1735 (2004)
63.Miyata, K., Omura, T., Kushida, T., Komizo, Y.Coarsening kinetics of multicomponent MC-type carbides in high-strength low-alloy steels. Metall. Mater. Trans. A 34, 1565 (2003)
64.Courtois, E., Epicier, T., Scott, C.EELS study of niobium carbo-nitride nano-precipitates in ferrite. Micron 37, 492 (2006)

Keywords

Modified embedded-atom method interatomic potentials for the Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems

  • Hyun-Kyu Kim (a1), Woo-Sang Jung (a2) and Byeong-Joo Lee (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed