Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-08T01:51:45.125Z Has data issue: false hasContentIssue false

Modulation of loop shift behavior by magnetic training for Co58Fe5Ni10Si11B16 amorphous ribbons

Published online by Cambridge University Press:  13 December 2011

Lei Zhou
Affiliation:
Division of Functional Material Research, China Iron & Steel Research Institute Group (CISRI), Beijing 100081, People’s Republic of China; and Division of Functional Material Research, Advanced Technology & Materials Co., Ltd., CISRI, Beijing 101081, People’s Republic of China
Jun He*
Affiliation:
Division of Functional Material Research, China Iron & Steel Research Institute Group, Beijing 100081, People’s Republic of China
Xiang Li
Affiliation:
School for Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
Bo Li
Affiliation:
Division of Functional Material Research, China Iron & Steel Research Institute Group, Beijing 100081, People’s Republic of China
Dong Liang Zhao
Affiliation:
Division of Functional Material Research, China Iron & Steel Research Institute Group, Beijing 100081, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: jun50543@yahoo.com
Get access

Abstract

The asymmetrical hysteresis loops of the longitudinal field annealed Co58Fe5Ni10Si11B16 amorphous ribbons were studied. Longitudinal magnetic training was deliberately performed on the annealed samples with exchange bias behavior. It was found that the shifted loops can be technically controlled by training the ribbons to modulate the abnormal magnetic features. The scanning probe microscope results reveal that the AC longitudinal magnetic training can decrease the vertical magnetic signal on the sample surface to a great extent. This skillful magnetic training method provides an approach to tailor the exchange bias behavior in the Co-based amorphous ribbons for potential applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Meiklejohn, W.H. and Bean, C.P.: New magnetic anisotropy. Phys. Rev. 102, 1413 (1956).CrossRefGoogle Scholar
2.Nogués, J. and Schuller, I.K.: Exchange bias. J. Magn. Magn. Mater. 192, 203 (1999).CrossRefGoogle Scholar
3.Choukh, A.M.: Effect of interface on exchange coupling in NiFe/FeMn system. IEEE Trans. Magn. 33, 3676 (1997).CrossRefGoogle Scholar
4.Gökemeijer, N.J., Penn, R.L., Veblen, D.R., and Chien, C.L.: Exchange coupling in epitaxial CoO/NiFe bilayers with compensated and uncompensated interfacial spin structures. Phys. Rev. B 63, 174422 (2001).CrossRefGoogle Scholar
5.Jungblut, R., Coehoorn, R., Johnson, M.T., aan de Stegge, J., and Reinders, A.: Orientational dependence of the exchange biasing in molecular-beam-epitaxy-grown Ni80Fe20/Fe50Mn50 bilayers. J. Appl. Phys. 75, 6659 (1994).CrossRefGoogle Scholar
6.Lai, C.H., Anthony, T.C., Iwamura, E., and White, R.L.: The effect of microstructure and interface conditions on the anisotropic exchange fields of NiO/NiFe. IEEE Trans. Magn. 32, 3419 (1996).Google Scholar
7.Lai, C.H., Matsuyama, H., White, R.L., Anthony, T.C., and Bush, G.G.: Exploration of magnetization reversal and coercivity of epitaxial NiO {111}/NiFe films. J. Appl. Phys. 79, 6389 (1996).CrossRefGoogle Scholar
8.Ambrose, T. and Chien, C.L.: Dependence of exchange coupling on antiferromagnetic layer thickness in NiFe/CoO bilayers. J. Appl. Phys. 83, 6822 (1998).CrossRefGoogle Scholar
9.Pan, M.H., You, B., Zhao, Y.L., Lu, M., Hu, A., Zhai, H.R., and Zhou, S.M.: Thermal stability of exchange bias in FeMn based bilayers. J. Appl. Phys. 91, 5272 (2002).CrossRefGoogle Scholar
10.Sahoo, S., Polisetty, S., Binek, C., and Berger, A.: Dynamic enhancement of the exchange bias training effect. J. Appl. Phys. 101, 053902 (2007).CrossRefGoogle Scholar
11.Fernandez-Outon, L.E., Vallejo-Fernandez, G., Manzoor, S., and O’Grady, K.: Thermal instabilities in exchange biased materials. J. Magn. Magn. Mater. 303, 296 (2006).CrossRefGoogle Scholar
12.Gao, T.R., Shi, Z., Zhou, S.M., Chantrell, R., Asselin, P., Bai, X.J., Du, J., and Zhang, Z.Z.: Exchange bias, training effect, hysteretic behavior of angular dependence, and rotational hysteresis loss in NiFe/FeMn bilayer: Effect of antiferromagnet layer thickness. J. Appl. Phys. 105, 053913 (2009).CrossRefGoogle Scholar
13.Xi, H. W, Franzen, S., and White, R.M.: Characterization and analysis of the training effect of exchange bias in coupled NiFe/IrMn bilayers. J. Appl. Phys. 101, 09E513 (2007).CrossRefGoogle Scholar
14.Brems, S., Volodin, A., Van Haesendonck, C., and Temst, K.: Magnetic force microscopy study of the training effect in polycrystalline Co/CoO bilayers. J. Appl. Phys. 103, 113912 (2008).CrossRefGoogle Scholar
15.Kohmoto, O., Yamaguchi, N., Ohya, K., and Fujishima, H.: Change of the magnetic property in some amorphous alloys by low temperature annealing. Jpn. J. Appl. Phys. 17, 257 (1978).CrossRefGoogle Scholar
16.Yamauchi, K. and Yoshizawa, Y.: Displaced hysteresis loops of cobalt-based amorphous alloys. Mater. Sci. Eng., A 133, 180 (1991).CrossRefGoogle Scholar
17.Chen, D.X., Li, Y.F., Pascual, L., Vazquez, M., and Hernando, A.: Hysteresis loop shift in annealed FeCrSiB amorphous wires. J. Magn. Magn. Mater. 212, 373 (2000).CrossRefGoogle Scholar
18.Li, Y.F., Chen, D.X., Vazquez, M., and Hernando, A.: Effects of magnetostatic interaction on the magnetization processes in Fe73.5Cu1Nb3Si13.5B9 nanocrystalline wires. J. Phys. D: Appl. Phys. 35, 508 (2002).CrossRefGoogle Scholar
19.He, J., Zhou, L., Zhao, D.L., and Wang, X.L.: Hysteresis loop shift behavior of CoFeSiB amorphous ribbons. J. Mater. Res. 24, 1607 (2009).CrossRefGoogle Scholar
20.Zhou, L., He, J., Li, X., Li, B., and Zhao, D.L.: Exchange bias behaviour of amorphous CoFeNiSiB ribbons. J. Phys. D: Appl. Phys. 42, 195001 (2009).CrossRefGoogle Scholar
21.Chen, D.X. and Pan, X.S.: Shift of hysteresis loops for nearly zero-magnetostrictive non-crystalline toroidal samples and its eliminating methods. Acta Metall. Sinca. 19, A176 (1983) (in Chinese).Google Scholar
22.Seu, K. A and Reilly, A. C: Ultrafast laser excitation of spin waves and the permanent modification of the exchange bias interaction in IrMn/Co. J. Appl. Phys. 103, 07C104 (2008).CrossRefGoogle Scholar
23.Zhou, L.: Research of loop shift behavior in soft magnetic amorphous ribbons. Ph.D. thesis(China Iron & Steel Research Institute Group, June, 2010), p. 33 (in Chinese).Google Scholar
24.Wan, D.F. and Ma, X.L.: Magnetic Physics (Chendu: University of Electronic Science and Technology of China Press, 1994), p. 344 (in Chinese).Google Scholar