Skip to main content

Molecular dynamics simulations of gold-catalyzed growth of silicon bulk crystals and nanowires

  • Seunghwa Ryu (a1) and Wei Cai (a2)

The growth kinetics of Si bulk crystals and nanowires (NWs) in contact with Au–Si liquids is studied by molecular dynamics simulations using an empirical potential fitted to the Au–Si binary phase diagram. The growth speed v is predicted as a function of Si concentration xSi in the Au–Si liquid at temperature T = 1100 K and as a function of T at xSi = 75%. For both bulk crystals and NWs, the {111} surface grows by the nucleation and expansion of a single two-dimensional island at small supersaturations, whereas the {110} surface grows simultaneously at multiple sites. The top surfaces of the NWs are found to be curved near the edges. The difference in the growth velocity between NWs and bulk crystals can be explained by the shift of the liquidus curve for NWs. For both bulk crystals and NWs, the growth speed diminishes in the low temperature limit because of reduced diffusivity.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Lieber C.M. and Wang Z.L.: Functional nanowires. MRS Bull. 32, 99 (2007).
2.Wong H.S.P.: Beyond the conventional transistor. IBM J. Res. Dev. 46, 133 (2002).
3.Schmidt V., Wittemann J.V., Senz S., and Gosele U.: Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mater. 21, 2681 (2009).
4.Dubrovskii V.G. and Sibirev N.V.: Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires. Phys. Rev. B 77, 035414 (2008).
5.Adhikari H., McIntyre P.C., Marshall A.F., and Chidsey C.E.D.: Conditions for subeutectic growth of Ge nanowires by the vapor-liquid-solid mechanism. J. Appl. Phys. 102, 094311 (2007).
6.Roper S.M., Davis S.H., Norris S.A., Golovin A.A., Voorhees P.W., and Weis M.: Steady growth of nanowires via the vapor-liquid-solid method. J. Appl. Phys. 102, 034304 (2007).
7.Schmidt V., Senz S., and Gosele U.: Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism. Phys. Rev. B 75, 045335 (2008).
8.Schwalbach E.J. and Voorhees P.W.: Phase equilibrium and nucleation in VLS-grown nanowires. Nano Lett. 8, 3739 (2008).
9.Schmidt V., Senz S., and Gösele U.: Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 5, 931 (2005).
10.Irrera A., Pecora E.F., and Priolo F.: Control of growth mechanisms and orientation in epitaxial Si nanowires grown by electron beam evaporation. Nanotechnology 20, 136601 (2009).
11.Adhikari H.: Ph.D. Thesis: Growth and Passivation of Germanium Nanowires, Stanford University (2008).
12.Madras P., Dailey E., and Drucker J.: Kinetically induced kinking of vapor−liquid−solid grown epitaxial Si nanowires. Nano Lett. 9, 3826 (2009).
13.Marshall A.F., Goldthorpe I.A., Adhikari H., Koto M., Wang Y., Fu L., Olsson E., and McIntyre P.C.: Hexagonal close-packed structure of Au nanocatalysts solidified after Ge nanowire vapor-liquid-solid growth. Nano Lett. (2011, in press).
14.Kuo C.L. and Clansy P.: MEAM molecular dynamics study of a gold thin film on a silicon substrate. Surf. Sci. 551, 39 (2004).
15.Dongare M., Neurock M., and Zhigilei L.V.: Angular-dependent embedded atom method potential for atomistic simulations of metal-covalent systems. Phys. Rev. B 80, 184106 (2009).
16.Haxhimali T., Buta D., Asta M., Voorhees P. W., and Hoyt J. J.: Size-dependent nucleation kinetics at nonplanar nanowire growth interfaces. Phys. Rev. E 80, 050601(R) (2009).
17.Ryu S. and Cai W.: A gold–silicon potential fitted to the binary phase diagram. J. Phys. Condens. Matter 22, 055401 (2010).
18.Allen R.J., Warren P.B., and ten Wolde P.R.: Sampling rare switching events in biochemical networks. Phys. Rev. Lett. 94, 018104 (2005).
19.Auer S. and Frenkel D.: Quantitative prediction of crystal-nucleation rates for spherical colloids: A computational approach. Annu. Rev. Phys. Chem. 55, 333 (2004).
20.Irrera A., Pecora E.F., and Priolo F.: Control of growth mechanisms and orientation in epitaxial Si nanowire grown by electron beam evaporation. Nanotechnology 20, 135601 (2009).
21.Adhikari H., Marshall A.H., Goldthorpe I.A., Chidsey C.E., and McIntyre P.C.: Metastability of Au-Ge liquid nanocatalysts: Ge vapor-liquid-solid nanowire growth far below the bulk eutectic temperature. ACS Nano 1, 415 (2007).
22.Baskes M.I.: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992).
23.Li J.: AtomEye: An efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. 11, 173 (2003).
24.Lowe C.P.: An alternative approach to dissipative particle dynamics. Europhys. Lett. 47, 145 (1999).
25.Ghiringhelli L., Valeriani C., Meijer E., and Frenkel D.: Local structure of liquid carbon controls diamond nucleation. Phys. Rev. Lett. 99, 055702 (2007).
26.Markov I. V.: Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy, 2nd ed. (World Scientific, Singapore, 2004).
27.Schwarz K.W. and Tersoff J.: From droplets to nanowires: Dynamics of vapor-liquid-solid growth. Phys. Rev. Lett. 102, 206102 (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 167 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th January 2018. This data will be updated every 24 hours.