Skip to main content Accessibility help

Molten-salt fabrication of (N,F)-codoped single-crystal-like titania with high exposure of (001) crystal facet for highly efficient degradation of methylene blue under visible light irradiation

  • Zengying Zhao (a1), Mingchao Feng (a1), Zhijian Peng (a1), Hongwei Huang (a2), Zhanhu Guo (a3) and Zhaohui Li (a4)...


Single-crystal-like TiO2 is claimed to be a very promising material among various catalysts. In this study, the (N,F)-co-doped single-crystal-like TiO2 was prepared by a new molten mixing process in which the mixed nitrates were used both as a morphology modifier and an N-doping agent at the same time. The prepared samples also had well-developed (001) facet due to the addition of HF. The HF can also be an F doping agent to the material. The co-doping of N and F can diminish the band gap of TiO2 from 3.05 to 2.93 eV, therefore visible light can be used effectively by the material. In addition, NO and fluorine ions existing on the surface of the sample can also help its photocatalyticity. Therefore, the photocatalytic performance of the as-prepared sample was effectively improved.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Fujishima, A. and Honda, K.: Electrochemical photocatalysis of water at semiconductor electrode. Nature 238, 3738 (1972).
2.Carey, J.H., Lawrence, J., and Tosine, H.M.: Photodechlorination of PCB’S in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol. 16, 697 (1976).
3.Frank, S.N. and Bard, A.J.: Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem. 81, 1484 (1977).
4.Perez, E., Vittorio, L., Torres, M.F., Sham, E., and Pérez, E.: Nitrogen doped TiO2 photoactive in visible light. Mater.-Rio De Janeiro 20, 561 (2015).
5.Primo, A. and Garcia, H.: Solar photocatalysis for environment remediation. New Future Dev. Catal. 6, 145 (2013).
6.Fujishima, A. and Zhang, X.: Titanium dioxide photocatalysis: Present situation and future approaches. C. R. Chim. 9, 750 (2006).
7.Fujishima, A., Rao, T.N., and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. Chem. 1, 1 (2000).
8.Varghese, O.K., Paulose, M., La Tempa, T.J., and Grimes, C.A.: High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731 (2009).
9.Yu, J., Wang, Y., and Xiao, W.: Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films. J. Mater. Chem. A 1, 10727 (2013).
10.Yang, J., Zhang, X., Li, B., Liu, H., Sun, P., Wang, C., Wang, L., and Liu, Y.: Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis. J. Alloys Compd. 584, 180 (2014).
11.Qiu, B., Xing, M., and Zhang, J.: Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136, 5852 (2014).
12.Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., and Gole, J.: Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049 (2003).
13.Huang, H.W., Li, X.W., Wang, J., Dong, F., Chu, P.K., Zhang, T., and Zhang, Y.H.: Anionic group self-doping as a promising strategy: Band-gap engineering and multi-functional applications of high-performance CO32-doped Bi2O2CO3. ACS Catal. 5, 4094 (2015).
14.Mesgari, Z. and Saien, J.: Pollutant degradation over dye sensitized nitrogen doped titanium substances in different configurations of visible light helical flow photoreactor. Sep. Purif. Technol. 185, 129 (2017).
15.Xiang, Q.J., Yu, J.G., and Jaroniec, M.: Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed {001} facets. Chem. Commun. 47, 4532 (2011).
16.Lai, Z.C., Peng, F., Wang, Y., Wang, H., Yu, H., Liub, P., and Zhao, H.: Low temperature solvothermal synthesis of anatase TiO2 single crystals with wholly {100} and {001} faceted surfaces. J. Mater. Chem. 22, 23906 (2012).
17.Sun, L., Zhao, Z., Zhou, Y., and Liu, L.: Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale 4, 613 (2012).
18.Zhang, J., Zhang, L., Shi, Y., Xu, G., Zhang, E., Wang, H., Kong, Z., Xi, J., and Ji, Z.: Anatase TiO2 nanosheets with coexposed {101} and {001} facets coupled with ultrathin SnS2 nanosheets as a face-to-face n–p–n dual heterojunction photocatalyst for enhancing photocatalytic activity. Appl. Surf. Sci. 420, 839 (2017).
19.Cao, Y., Zong, L., Li, Q., Li, C., Li, J., and Yang, J.: Solvothermal synthesis of TiO2 nanocrystals with {001} facets using titanic acid nanobelts for superior photocatalytic activity. Appl. Surf. Sci. 391, 311 (2017).
20.Li, D., Chen, F., Jiang, D., Shi, W., and Zheng, W.: Enhanced photocatalytic activity of N-doped TiO2 nanocrystals with exposed {001} facets. Appl. Surf. Sci. 390, 689 (2016).
21.Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).
22.Yang, H.G., Liu, G., Qiao, S.Z., Sun, C.H., Jin, Y.G., Smith, S.C., Zou, J., Cheng, H.M., and Lu, G.Q.: Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} faces. J. Am. Chem. Soc. 131, 4078 (2009).
23.Alivov, Y. and Fan, Z.Y.: A method for fabrication of pyramid-shaped TiO2 nanoparticles with a high {001} facet percentage. J. Phys. Chem. C 113, 12954 (2009).
24.Liu, G., Sun, C.H., Yang, H.G., Smith, S.C., Wang, L., Lu, G.Q., and Cheng, H.M.: Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem. Commun. 46, 755 (2010).
25.Liu, S.W., Yu, G.Y., and Jaroniec, M.: Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatasepolyhedra with exposed {001} facets. J. Am. Chem. Soc. 132, 11914 (2010).
26.Zhang, Q.F., Dandeneau, C.S., Zhou, X.Y., and Cao, G.Z.: ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087 (2009).
27.Chen, J.S., Tan, Y.L., Li, C.M., Cheah, Y.L., Luan, D., Madhavi, S., Boey, F.Y., Archer, L.A., and Lou, X.W.: Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 132, 6124 (2010).
28.Zheng, X., Kuang, Q., Yan, K., Qiu, Y., Qiu, J., and Yang, S.: Mesoporous TiO2 single crystals: Facile shape-, size-, and phase-controlled growth and efficient photocatalytic performance. ACS Appl. Mater. Interfaces 5, 11249 (2013).
29.Sivaram, V., Crossland, E.J.W., Leijtens, T., Noel, N.K., Alexander-Webber, J., Docampo, P., and Snaith, H.J.: Observation of annealing-induced doping in TiO2 mesoporous single crystals for use in solid state dye sensitized solar cells. J. Phys. Chem. C 118, 1821 (2014).
30.Li, C., Chen, G., Sun, J., Rao, J., Han, Z., Hu, Y., and Zhou, Y.: A novel mesoporous single-crystal-like Bi2WO6 with enhanced photocatalytic activity for pollutants degradation and oxygen production. ACS Appl. Mater. Interfaces 7, 25716 (2015).
31.Li, C.X., Zhao, Z.Y., Lomboleni, H.S., Huang, H.W., and Peng, Z.J.: Enhanced visible photocatalytic activity of nitrogen doped single crystal-like TiO2 by synergistic treatment with urea and mixed nitrates. J. Mater. Res. 32, 737 (2017).
32.Yu, H., Shi, R., Zhao, Y., Bian, T., Zhao, Y., Zhou, C., Waterhouse, G.I.N., Wu, L., Tung, C., and Zhang, T.: Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29, 16051481605156 (2017).
33.Zhao, Y., Zhao, B., Liu, J., Chen, G., Gao, R., Yao, S., Li, M., Zhang, Q., Gu, L., Xie, J., Wen, X., Wu, L., Tung, C., Ma, D., and Zhang, T.: Oxide-modified nickel photocatalysts for the production of hydrocarbons in visible light. Angew. Chem. Int. Ed. 55, 4215 (2016).
34.Zhao, Y., Chen, G., Bian, T., Zhou, C., Waterhouse, G.I.N., Wu, L., Tung, C., Smith, L.J., O’Hare, D., and Zhang, T.: Defect-rich ultrathin znal-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 27, 7824 (2015).
35.Zheng, L., Yu, X., Long, M., and Li, Q.: Humic acid-mediated visible-light degradation of phenol on phosphate-modified and Nafion-modified TiO2 surfaces. Chin. J. Catal. 38, 2076 (2017).
36.Huang, H.W., Xiao, K., He, Y., Zhang, T., Dong, F., Du, X., and Zhang, Y.H.: In situ assembly of BiOI@Bi12O17Cl2 p–n junction: Charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. Appl. Catal. B Environ. 199, 75 (2016).
37.Huang, H.W., He, Y., Li, X., Li, M., Zeng, C., Dong, F., Du, X., Zhang, T., and Zhang, Y.H.: Bi2O2(OH)(NO3) as a desirable [Bi2O2](2+) layered photocatalyst: Strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability. J. Mater. Chem. A 3, 24547 (2015).
38.Lyu, Z., Liu, B., Wang, R., and Tian, L.: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).
39.Cheng, X., Yu, X., Xing, Z., and Yang, L.: Enhanced visible light photocatalytic activity of mesoporous anatase TiO2 codoped with nitrogen and chlorine. Int. J. Photoenergy 2012, 1 (2012).
40.Wang, X., Shen, S., Feng, Z., and Li, C.: Time-resolved photoluminescence of anatase/rutile TiO2 phase junction revealing charge separation dynamics. Chin. J. Catal. 37, 2059 (2016).
41.Kassahun, S.K., Kiflie, Z., Shin, D.W., Park, S.S., Jung, W.Y., and Chung, Y.R.: Facile low temperature immobilization of N-doped TiO2 prepared by sol–gel method. J. Sol-Gel Sci. Technol. 83, 698 (2017).
42.Jagadale, T.C., Takale, S.P., Sonawane, R.S., Joshi, H.M., Patil, S.I., Kale, B.B., and Ogale, S.B.: N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol–gel method. J. Phys. Chem. C 112, 14595 (2008).
43.Naik, B., Moon, S.Y., Kim, S.H., and Park, J.Y.: Enhanced photocatalytic generation of hydrogen by Pt-deposited nitrogen-doped TiO2 hierarchical nanostructures. Appl. Surf. Sci. 354, 347 (2015).
44.Jyothi, M.S., Souza Laveena, P.D., Shwetharani, R., and Balakrishna, G.R.: Novel hydrothermal method for effective doping of N and F into nano titania for both, energy and environmental applications. Mater. Res. Bull. 74, 478 (2016).
45.Huang, H.W., Liu, K., Chen, K., Zhang, Y.L., Zhang, Y.H., and Wang, S.C.: Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J. Phys. Chem. C 118, 14379 (2014).
46.Han, X.G., Kuang, Q., Jin, M.S., Xie, Z., and Zheng, L.: Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131, 3152 (2009).
47.Wang, Z.Y., Lv, K.L., Wang, G.H., Deng, K., and Tang, D.: Study on the shape control and photocatalytic activity of high-energy anatase titania. Appl. Catal., B 100, 378 (2011).
48.Liu, Y., Tian, L., Tan, X., Li, X., and Chen, X.: Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. 62, 431 (2017).
49.Li, F., Han, T., Wang, H., Zheng, X., Wan, J., and Ni, B.: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).
50.Shet, S., Ahn, K., Deutsch, T., Wang, H.L., Ravindra, N., Yan, Y.F., Turner, J., and Al-Jassim, M.: Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting. J. Mater. Res. 25, 69 (2010).
51.Prochazka, J., Kavan, L., Zukalova, M., Janda, P., Jirkovsky, J., Zivcova, Z.V., Poruba, A., Bedu, M., Döbbelin, M., and Tena-Zaera, R.: Dense TiO2 films grown by sol–gel dip coating on glass, F-doped SnO2, and silicon substrates. J. Mater. Res. 28, 385 (2013).
52.Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., and Xu, Y.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).
53.Ishibashi, K.I., Fujishima, A., Watanabe, T., and Hashimoto, K.: Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun. 2, 207 (2000).
54.Zhu, J., Wang, S., Bian, Z., Xie, S., Cai, C., Wang, J., Yang, H., and Li, H.: Solvothermally controllable synthesis of anatase TiO2 nanocrystals with dominant {001} facets and enhanced photocatalytic activity. CrystEngComm 12, 2219 (2010).
55.Yu, J.G., Dai, G.P., Xiang, Q.J., and Jaroniec, M.: Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets. J. Mater. Chem. 21, 1049 (2011).
56.Huang, H.W., Cao, R.R., Yu, S., Xu, K., Hao, W., Wang, Y., Dong, F., Zhang, T., and Zhang, Y.H.: Single-unit-cell layer established Bi2WO6 3D hierarchical architectures: Efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance. Appl. Catal. B Environ. 219, 526 (2017).
57.Huang, H.W., Xiao, K., Zhang, T., Dong, F., and Zhang, Y.H.: Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Appl. Catal. B Environ. 203, 879 (2017).
58.Xie, J., Bian, L., Yao, L., Hao, Y.J., and Wei, Y.: Simple fabrication of mesoporous TiO2 microspheres for photocatalytic degradation of pentachlorophenol. Mater. Lett. 91, 213 (2013).
59.Huang, H.W., Han, X., Li, X., Wang, S., Chu, P.K., and Zhang, Y.H.: Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOl full-range composites based on microstructure modulation and band structures. ACS Appl. Mater. Interfaces 7, 482 (2015).
60.Selvam, K., Balachandran, S., Velmurugan, R., and Swaminathan, M.: Mesoporous nitrogen doped nano titania—A green photocatalyst for the effective reductive cleavage of azoxy benzenes to amines or 2-phenyl indazoles in methanol. Appl. Catal., A 413, 213 (2012).
61.Yan, Y., Chen, T., Zou, Y., and Wang, Y.: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016).
62.Qi, K., Cheng, B., Yu, J., and Ho, W.: A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 38, 1936 (2017).
63.Valentin, C.D., Finazzi, E., and Pacchioni, G.: Density functional theory and electron paramagnetic resonance study on the effect of N-F codoping of TiO2. Chem. Mater. 20, 3706 (2008).
64.Huang, H.W., Xiao, K., Tian, N., Dong, F., Zhang, T., Du, X., and Zhang, Y.H.: Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity. J. Mater. Chem. A 5, 17452 (2017).
65.Wu, F., Li, X., Liu, W., and Zhang, S.: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4–RGO–TiO2 nanoheterojunctions. Appl. Surf. Sci. 405, 60 (2017).
66.Li, X., Xia, T., Xu, C., Murowchick, J., and Chen, X.: Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catal. Today 225, 64 (2014).
67.Wu, F., Liu, W., Qiu, J., Li, J., Zhou, W., Fang, Y., Zhang, S., and Li, X.: Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal. Appl. Surf. Sci. 358, 425 (2015).
68.Huang, H.W., He, Y., Lin, Z., Kang, L., and Zhang, Y.H.: Two novel Bi-based borate photocatalysts: Crystal structure, electronic structure, photoelectrochemical properties, and photocatalytic activity under simulated solar light irradiation. J. Phys. Chem. C 117, 22986 (2013).
69.Huang, H.W., Tu, S.C., Zeng, C., Zhang, T., Reshak, A.H., and Zhang, Y.H.: Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem., Int. Ed. 56, 11860 (2017).
70.Tian, L., Xu, J., Alnafisah, A., Wang, R., Tan, X., Oyler, N.A., Liu, L., and Chen, X.: A novel green TiO2 photocatalyst with a surface charge-transfer complex of Ti and hydrazine groups. Chem. Eur. J. 23, 5345 (2017).
71.Liu, F., Yan, X., Chen, X., Tian, L., Xia, Q., and Chen, X.: Mesoporous TiO2 nanoparticles terminated with carbonate-like groups: Amorphous/crystalline structure and visible-light photocatalytic activity. Catal. Today 264, 243 (2016).
72.Liu, L. and Chen, X.: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114, 9890 (2014).
73.Cheng, J.Y., Chen, J., Lin, W., Liu, Y.D., and Kong, Y.: Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size. Appl. Surf. Sci. 332, 573 (2015).
74.Zhang, J.L., Wu, Y.M., Xing, M.Y., Leghari, S.A.K., and Sajjad, S.: Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci. 3, 715 (2010).
75.Li, X., Liu, H.L., Luo, D.L., Li, J.T., Huang, Y., Li, H.L., Fang, Y.P., Xu, Y.H., and Zhu, L.: Adsorption of CO2 on heterostructure CdS (Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem. Eng. J. 180, 151 (2012).


Type Description Title
Supplementary materials

Zhao et al. supplementary material
Figures S1-S4

 Word (728 KB)
728 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed