Skip to main content
×
Home
    • Aa
    • Aa

Multidimensional SPM applied for nanoscale conductance mapping

  • James L. Bosse (a1), Ilja Grishin (a2), Oleg V. Kolosov (a2) and Bryan D. Huey (a3)
Abstract
Abstract

A new approach has been developed for nanoscale conductance mapping (NCM) based on multidimensional atomic force microscopy (AFM) to efficiently investigate the nanoscale electronic properties of heterogeneous surfaces. The technique uses a sequence of conductive AFM images, all acquired in a single area but each with incrementally higher applied voltages. This generates a matrix of current versus voltage (IV) spectra, providing nanoscale maps of conductance and current nonlinearities with negligible spatial drift. For crystalline and amorphous phases of a GeSe chalcogenide phase change film, conductance and characteristic amorphous phase “turn-on” voltages are mapped with results providing traditional point-by-point IV measurements, but acquired hundreds of times faster. Although similar to current imaging tunneling spectroscopy in a scanning tunneling microscope, the NCM technique does not require conducting specimens. It is therefore a promising approach for efficient, quantitative electronic investigations of heterogeneous materials used in sensors, resistive memories, and photovoltaics.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: bhuey@ims.uconn.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

G. Binnig , C.F. Quate , and C. Gerber : Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986).

P. Fiorenza , R. Lo Nigro , V. Raineri , and D. Salinas : Breakdown kinetics at nanometer scale of innovative MOS devices by conductive atomic force microscopy. Microelectron. Eng. 84(3), 441 (2007).

P. Dewolf , J. Snauwaert , T. Clarysse , W. Vandervorst , and L. Hellemans : Characterization of a point-contact on silicon using force microscopy-supported resistance measurements. Appl. Phys. Lett. 66(12), 1530 (1995).

C. Shafai , D.J. Thomson , M. Simardnormandin , G. Mattiussi , and P.J. Scanlon : Delineation of semiconductor doping by scanning resistance microscopy. Appl. Phys. Lett. 64(3), 342 (1994).

A. Bayerl , M. Lanza , M. Porti , F. Campabadal , M. Nafria , X. Aymerich , and G. Benstetter : Reliability and gate conduction variability of HfO2-based MOS devices: A combined nanoscale and device level study. Microelectron. Eng. 88(7), 1334 (2011).

H.R. Moutinho , R.G. Dhere , C. Ballif , M.M. Al-Jassim , and L.L. Kazmerski : Alternative procedure for the fabrication of close-spaced sublimated CdTe solar cells. J. Vac. Sci. Technol., A 18(4), 1599 (2000).

B. Alperson , S. Cohen , I. Rubinstein , and G. Hodes : Room-temperature conductance spectroscopy of CdSe quantum dots using a modified scanning force microscope. Phys. Rev. B 52(24), 17017 (1995).

B.J. Leever , M.F. Durstock , M.D. Irwin , A.W. Hains , T.J. Marks , L.S.C. Pingree , and M.C. Hersam : Spatially resolved photocurrent mapping of operating organic photovoltaic devices using atomic force photovoltaic microscopy. Appl. Phys. Lett. 92(1), 013302 (2008).

B.D. Huey , D. Lisjak , and D.A. Bonnell : Nanometer-scale variations in interface potential by scanning probe microscopy. J. Am. Ceram. Soc. 82(7), 1941 (1999).

B.D. Huey and D.A. Bonnell : Nanoscale variation in electric potential at oxide bicrystal and polycrystal interfaces. Solid State Ionics 131(1–2), 51 (2000).

B.D. Huey and D.A. Bonnell : Spatially localized dynamic properties of individual interfaces in semiconducting oxides. Appl. Phys. Lett. 76(8), 1012 (2000).

H. Kim , S. Hong , and D-W. Kim : Ambient effects on electric-field-induced local charge modification of TiO2. Appl. Phys. Lett. 100(2), (2012).

H. Ko , K. Ryu , H. Park , C. Park , D. Jeon , Y.K. Kim , J. Jung , D-K. Min , Y. Kim , H.N. Lee , Y. Park , H. Shin , and S. Hong : High-resolution field effect sensing of ferroelectric charges. Nano Lett. 11(4), 1428 (2011).

B.J. Bae , S.H. Hong , S.Y. Hwang , J.Y. Hwang , K.Y. Yang , and H. Lee : Electrical characterization of Ge-Sb-Te phase change nano-pillars using conductive atomic force microscopy. Semicond. Sci. Technol. 24(7), 075016 (2009).

S. Gidon , O. Lemonnier , B. Rolland , O. Bichet , C. Dressler , and Y. Samson : Electrical probe storage using Joule heating in phase change media. Appl. Phys. Lett. 85(26), 6392 (2004).

T. Gotoh , K. Sugawara , and K. Tanaka : Minimal phase-change marks produced in amorphous Ge2Sb2Te5 films. Jpn. J. Appl. Phys. 43(6B), 818 (2004).

H. Wong , S. Raoux , S. Kim , J. Liang , J.P. Reifenberg , B. Rajendran , M. Asheghi , and K.E. Goodson : Phase change memory. Proc. IEEE 98(12), 2201 (2010).

C.D. Wright , M. Armand , and M.M. Aziz : Terabit-per-square-inch data storage using phase-change media and scanning electrical nanoprobes. IEEE Trans. Nanotechnol. 5(1), 50 (2006).

H.F. Hamann , M. O'Boyle , Y.C. Martin , M. Rooks , and K. Wickramasinghe : Ultra-high-density phase-change storage and memory. Nat. Mater. 5(5), 383 (2006).

D.L. Klein and P.L. Mceuen : Conducting atomic-force microscopy of alkane layers on graphite. Appl. Phys. Lett. 66(19), 2478 (1995).

F. Hauquier , D. Alamarguy , P. Viel , S. Noel , A. Filoramo , V. Huc , F. Houze , and S. Palacin : Conductive-probe AFM characterization of graphene sheets bonded to gold surfaces. Appl. Surf. Sci. 258(7), 2920 (2012).

N. Gosvami , K.H.A. Lau , S.K. Sinha , and S.J. O'Shea : Effect of end groups on contact resistance of alkanethiol based metal-molecule-metal junctions using current sensing AFM. Appl. Surf. Sci. 252(11), 3956 (2006).

M. Schloffer , C. Teichert , P. Supancic , A. Andreev , Y. Hou , and Z.H. Wang : Electrical characterization of ZnO multilayer varistors on the nanometre scale with conductive atomic force microscopy. J. Eur. Ceram. Soc. 30(7), 1761 (2010).

H.J. Lee , J. Lee , and S.M. Park : Electrochemistry of conductive polymers. 45. Nanoscale conductivity of PEDOT and PEDOT: PSS composite films studied by current-sensing AFM. J. Phys. Chem. B 114(8), 2660 (2010).

D.A. Bussian , J.R. O'Dea , H. Metiu , and S.K. Buratto : Nanoscale current imaging of the conducting channels in proton exchange membrane fuel cells. Nano Lett. 7(2), 227 (2007).

A. Alexeev , J. Loos , and M.M. Koetse : Nanoscale electrical characterization of semiconducting polymer blends by conductive atomic force microscopy. Ultramicroscopy 106(3), 191 (2006).

T.W. Kelley and C.D. Frisbie : Point contact current-voltage measurements on individual organic semiconductor grains by conducting probe atomic force microscopy. J. Vac. Sci. Technol., B 18(2), 632 (2000).

G. Binnig , H. Rohrer , C. Gerber , and E. Weibel : Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57 (1982).

M. Salmeron , D.F. Ogletree , C. Ocal , H.C. Wang , G. Neubauer , W. Kolbe , and G. Meyers : Tip-surface forces during imaging by scanning tunneling microscopy. J. Vac. Sci. Technol., B 9(2), 1347 (1991).

M.C. Hersam , A.C.F. Hoole , S.J. O'Shea , and M.E. Welland : Potentiometry and repair of electrically stressed nanowires using atomic force microscopy. Appl. Phys. Lett. 72(8), 915 (1998).

H.N. Lin , H.L. Lin , S.S. Wang , L.S. Yu , G.Y. Perng , S.A. Chen , and S.H. Chen : Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy. Appl. Phys. Lett. 81(14), 2572 (2002).

P. De Wolf , R. Stephenson , T. Trenkler , T. Clarysse , T. Hantschel , and W. Vandevorst : Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy. J. Vac. Sci. Technol., B 18(1), 361 (2000).

H.R. Moutinho , R.G. Dhere , C.S. Jiang , M.M. Al-Jassim , and L.L. Kazmerski : Electrical properties of CdTe/CdS solar cells investigated with conductive atomic force microscopy. Thin Solid Films 514(1–2), 150 (2006).

Y. Otsuka , Y. Naitoh , T. Matsumoto , and T. Kawai : A nano tester: A new technique for nanoscale electrical characterization by point-contact current-imaging atomic force microscopy. Jpn. J. Appl. Phys., Part 2 41(7A), L742 (2002).

E.T. Herruzo , H. Asakawa , T. Fukuma , and R. Garcia : Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions. Nanoscale 5(7), 2678 (2013).

W. Allers , A. Schwarz , U.D. Schwarz , and R. Wiesendanger : A scanning force microscope with atomic resolution in ultrahigh vacuum and at low temperatures. Rev. Sci. Instrum. 69(1), 221 (1998).

B.J. Albers , M. Liebmann , T.C. Schwendemann , M.Z. Baykara , M. Heyde , M. Salmeron , E.I. Altman , and U.D. Schwarz : Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy. Rev. Sci. Instrum. 79(3), 033704 (2008).

M.Z. Baykara , T.C. Schwendemann , E.I. Altman , and U.D. Schwarz : Three-dimensional atomic force microscopy: Taking surface imaging to the next level. Adv. Mater. 22(26–27), 2838 (2010).

B.D. Huey : AFM and acoustics: Fast, quantitative nanomechanical mapping. Annu. Rev. Mater. Res. 37, 351 (2007).

W. Ho : Single-molecule chemistry. J. Chem. Phys. 117(24), 11033 (2002).

D.S. Jeong , H. Lim , G.H. Park , C.S. Hwang , S. Lee , and B.K. Cheong : Threshold resistive and capacitive switching behavior in binary amorphous GeSe. J. Appl. Phys. 111(10), 102807 (2012).

L.M. Picco , L. Bozec , A. Ulcinas , D.J. Engledew , M. Antognozzi , M.A. Horton , and M.J. Miles : Breaking the speed limit with atomic force microscopy. Nanotechnology 18(4), 044030 (2007).

A.M. Cowley : Depletion capacitance and diffusion potential of gallium phosphide Schottky-barrier diodes. J. Appl. Phys. 37(8), 3024 (1966).

H. Card and E. Rhoderick : Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D: Appl. Phys. 4(10), 1589 (2002).

H.K. Henisch : Rectifying semiconductor contacts. J. Electrochem. Soc. 103(11), 637 (1956).

A.L. Weisenhorn , P. Maivald , H.J. Butt , and P.K. Hansma : Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B 45(19), 11226 (1992).

E. Márquez , P. Nagels , J.M. González-Leal , A.M. Bernal-Oliva , E. Sleeckx , and R. Callaerts : On the optical constants of amorphous GexSe1−x thin films of non-uniform thickness prepared by plasma-enhanced chemical vapour deposition. Vacuum 52(1–2), 55 (1999).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 69 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 28th June 2017. This data will be updated every 24 hours.