Skip to main content Accessibility help

Multidimensional SPM applied for nanoscale conductance mapping

  • James L. Bosse (a1), Ilja Grishin (a2), Oleg V. Kolosov (a2) and Bryan D. Huey (a3)


A new approach has been developed for nanoscale conductance mapping (NCM) based on multidimensional atomic force microscopy (AFM) to efficiently investigate the nanoscale electronic properties of heterogeneous surfaces. The technique uses a sequence of conductive AFM images, all acquired in a single area but each with incrementally higher applied voltages. This generates a matrix of current versus voltage (IV) spectra, providing nanoscale maps of conductance and current nonlinearities with negligible spatial drift. For crystalline and amorphous phases of a GeSe chalcogenide phase change film, conductance and characteristic amorphous phase “turn-on” voltages are mapped with results providing traditional point-by-point IV measurements, but acquired hundreds of times faster. Although similar to current imaging tunneling spectroscopy in a scanning tunneling microscope, the NCM technique does not require conducting specimens. It is therefore a promising approach for efficient, quantitative electronic investigations of heterogeneous materials used in sensors, resistive memories, and photovoltaics.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Binnig, G., Quate, C.F., and Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986).
2.Fiorenza, P., Lo Nigro, R., Raineri, V., and Salinas, D.: Breakdown kinetics at nanometer scale of innovative MOS devices by conductive atomic force microscopy. Microelectron. Eng. 84(3), 441 (2007).
3.Dewolf, P., Snauwaert, J., Clarysse, T., Vandervorst, W., and Hellemans, L.: Characterization of a point-contact on silicon using force microscopy-supported resistance measurements. Appl. Phys. Lett. 66(12), 1530 (1995).
4.Shafai, C., Thomson, D.J., Simardnormandin, M., Mattiussi, G., and Scanlon, P.J.: Delineation of semiconductor doping by scanning resistance microscopy. Appl. Phys. Lett. 64(3), 342 (1994).
5.Chappanda, K.N. and Tabib-Azar, M.: Conducting AFM studies of metal surface contact resistance for NEMS switches. In Sensors, 2011 IEEE, edited by K. Ozanyan. (IEEE, New York, NY, 2011); p. 1371.
6.Bayerl, A., Lanza, M., Porti, M., Campabadal, F., Nafria, M., Aymerich, X., and Benstetter, G.: Reliability and gate conduction variability of HfO2-based MOS devices: A combined nanoscale and device level study. Microelectron. Eng. 88(7), 1334 (2011).
7.Moutinho, H.R., Dhere, R.G., Ballif, C., Al-Jassim, M.M., and Kazmerski, L.L.: Alternative procedure for the fabrication of close-spaced sublimated CdTe solar cells. J. Vac. Sci. Technol., A 18(4), 1599 (2000).
8.Alperson, B., Cohen, S., Rubinstein, I., and Hodes, G.: Room-temperature conductance spectroscopy of CdSe quantum dots using a modified scanning force microscope. Phys. Rev. B 52(24), 17017 (1995).
9.Leever, B.J., Durstock, M.F., Irwin, M.D., Hains, A.W., Marks, T.J., Pingree, L.S.C., and Hersam, M.C.: Spatially resolved photocurrent mapping of operating organic photovoltaic devices using atomic force photovoltaic microscopy. Appl. Phys. Lett. 92(1), 013302 (2008).
10.Huey, B.D., Lisjak, D., and Bonnell, D.A.: Nanometer-scale variations in interface potential by scanning probe microscopy. J. Am. Ceram. Soc. 82(7), 1941 (1999).
11.Huey, B.D. and Bonnell, D.A.: Nanoscale variation in electric potential at oxide bicrystal and polycrystal interfaces. Solid State Ionics 131(1–2), 51 (2000).
12.Huey, B.D. and Bonnell, D.A.: Spatially localized dynamic properties of individual interfaces in semiconducting oxides. Appl. Phys. Lett. 76(8), 1012 (2000).
13.Kim, H., Hong, S., and Kim, D-W.: Ambient effects on electric-field-induced local charge modification of TiO2. Appl. Phys. Lett. 100(2), (2012).
14.Ko, H., Ryu, K., Park, H., Park, C., Jeon, D., Kim, Y.K., Jung, J., Min, D-K., Kim, Y., Lee, H.N., Park, Y., Shin, H., and Hong, S.: High-resolution field effect sensing of ferroelectric charges. Nano Lett. 11(4), 1428 (2011).
15.Bae, B.J., Hong, S.H., Hwang, S.Y., Hwang, J.Y., Yang, K.Y., and Lee, H.: Electrical characterization of Ge-Sb-Te phase change nano-pillars using conductive atomic force microscopy. Semicond. Sci. Technol. 24(7), 075016 (2009).
16.Gidon, S., Lemonnier, O., Rolland, B., Bichet, O., Dressler, C., and Samson, Y.: Electrical probe storage using Joule heating in phase change media. Appl. Phys. Lett. 85(26), 6392 (2004).
17.Gotoh, T., Sugawara, K., and Tanaka, K.: Minimal phase-change marks produced in amorphous Ge2Sb2Te5 films. Jpn. J. Appl. Phys. 43(6B), 818 (2004).
18.Wong, H., Raoux, S., Kim, S., Liang, J., Reifenberg, J.P., Rajendran, B., Asheghi, M., and Goodson, K.E.: Phase change memory. Proc. IEEE 98(12), 2201 (2010).
19.Wright, C.D., Armand, M., and Aziz, M.M.: Terabit-per-square-inch data storage using phase-change media and scanning electrical nanoprobes. IEEE Trans. Nanotechnol. 5(1), 50 (2006).
20.Hamann, H.F., O'Boyle, M., Martin, Y.C., Rooks, M., and Wickramasinghe, K.: Ultra-high-density phase-change storage and memory. Nat. Mater. 5(5), 383 (2006).
21.Klein, D.L. and Mceuen, P.L.: Conducting atomic-force microscopy of alkane layers on graphite. Appl. Phys. Lett. 66(19), 2478 (1995).
22.Hauquier, F., Alamarguy, D., Viel, P., Noel, S., Filoramo, A., Huc, V., Houze, F., and Palacin, S.: Conductive-probe AFM characterization of graphene sheets bonded to gold surfaces. Appl. Surf. Sci. 258(7), 2920 (2012).
23.Gosvami, N., Lau, K.H.A., Sinha, S.K., and O'Shea, S.J.: Effect of end groups on contact resistance of alkanethiol based metal-molecule-metal junctions using current sensing AFM. Appl. Surf. Sci. 252(11), 3956 (2006).
24.Schloffer, M., Teichert, C., Supancic, P., Andreev, A., Hou, Y., and Wang, Z.H.: Electrical characterization of ZnO multilayer varistors on the nanometre scale with conductive atomic force microscopy. J. Eur. Ceram. Soc. 30(7), 1761 (2010).
25.Lee, H.J., Lee, J., and Park, S.M.: Electrochemistry of conductive polymers. 45. Nanoscale conductivity of PEDOT and PEDOT: PSS composite films studied by current-sensing AFM. J. Phys. Chem. B 114(8), 2660 (2010).
26.Bussian, D.A., O'Dea, J.R., Metiu, H., and Buratto, S.K.: Nanoscale current imaging of the conducting channels in proton exchange membrane fuel cells. Nano Lett. 7(2), 227 (2007).
27.Alexeev, A., Loos, J., and Koetse, M.M.: Nanoscale electrical characterization of semiconducting polymer blends by conductive atomic force microscopy. Ultramicroscopy 106(3), 191 (2006).
28.Kelley, T.W. and Frisbie, C.D.: Point contact current-voltage measurements on individual organic semiconductor grains by conducting probe atomic force microscopy. J. Vac. Sci. Technol., B 18(2), 632 (2000).
29.Binnig, G., Rohrer, H., Gerber, C., and Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57 (1982).
30.Salmeron, M., Ogletree, D.F., Ocal, C., Wang, H.C., Neubauer, G., Kolbe, W., and Meyers, G.: Tip-surface forces during imaging by scanning tunneling microscopy. J. Vac. Sci. Technol., B 9(2), 1347 (1991).
31.Hersam, M.C., Hoole, A.C.F., O'Shea, S.J., and Welland, M.E.: Potentiometry and repair of electrically stressed nanowires using atomic force microscopy. Appl. Phys. Lett. 72(8), 915 (1998).
32.Lin, H.N., Lin, H.L., Wang, S.S., Yu, L.S., Perng, G.Y., Chen, S.A., and Chen, S.H.: Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy. Appl. Phys. Lett. 81(14), 2572 (2002).
33.De Wolf, P., Stephenson, R., Trenkler, T., Clarysse, T., Hantschel, T., and Vandevorst, W.: Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy. J. Vac. Sci. Technol., B 18(1), 361 (2000).
34.Moutinho, H.R., Dhere, R.G., Jiang, C.S., Al-Jassim, M.M., and Kazmerski, L.L.: Electrical properties of CdTe/CdS solar cells investigated with conductive atomic force microscopy. Thin Solid Films 514(1–2), 150 (2006).
35.Otsuka, Y., Naitoh, Y., Matsumoto, T., and Kawai, T.: A nano tester: A new technique for nanoscale electrical characterization by point-contact current-imaging atomic force microscopy. Jpn. J. Appl. Phys., Part 2 41(7A), L742 (2002).
36.Herruzo, E.T., Asakawa, H., Fukuma, T., and Garcia, R.: Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions. Nanoscale 5(7), 2678 (2013).
37.Allers, W., Schwarz, A., Schwarz, U.D., and Wiesendanger, R.: A scanning force microscope with atomic resolution in ultrahigh vacuum and at low temperatures. Rev. Sci. Instrum. 69(1), 221 (1998).
38.Albers, B.J., Liebmann, M., Schwendemann, T.C., Baykara, M.Z., Heyde, M., Salmeron, M., Altman, E.I., and Schwarz, U.D.: Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy. Rev. Sci. Instrum. 79(3), 033704 (2008).
39.Baykara, M.Z., Schwendemann, T.C., Altman, E.I., and Schwarz, U.D.: Three-dimensional atomic force microscopy: Taking surface imaging to the next level. Adv. Mater. 22(26–27), 2838 (2010).
40.Huey, B.D.: AFM and acoustics: Fast, quantitative nanomechanical mapping. Annu. Rev. Mater. Res. 37, 351 (2007).
41.Bosse, J.L., Lee, S., Huey, B.D., Andersen, A.S., and Sutherland, D.S.: High speed friction microscopy and nanoscale friction coefficient mapping. Nanotechnology (2013, submitted).
42.Ho, W.: Single-molecule chemistry. J. Chem. Phys. 117(24), 11033 (2002).
43.Jeong, D.S., Lim, H., Park, G.H., Hwang, C.S., Lee, S., and Cheong, B.K.: Threshold resistive and capacitive switching behavior in binary amorphous GeSe. J. Appl. Phys. 111(10), 102807 (2012).
44.Picco, L.M., Bozec, L., Ulcinas, A., Engledew, D.J., Antognozzi, M., Horton, M.A., and Miles, M.J.: Breaking the speed limit with atomic force microscopy. Nanotechnology 18(4), 044030 (2007).
45.Cowley, A.M.: Depletion capacitance and diffusion potential of gallium phosphide Schottky-barrier diodes. J. Appl. Phys. 37(8), 3024 (1966).
46.Card, H. and Rhoderick, E.: Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D: Appl. Phys. 4(10), 1589 (2002).
47.Keenan, W., Schumann, P., Tong, A., and Phillips, R.: Ohmic Contacts to Semiconductors (The Electrochemical Society, Princeton, NJ, 1969).
48.Henisch, H.K.: Rectifying semiconductor contacts. J. Electrochem. Soc. 103(11), 637 (1956).
49.Weisenhorn, A.L., Maivald, P., Butt, H.J., and Hansma, P.K.: Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B 45(19), 11226 (1992).
50.Márquez, E., Nagels, P., González-Leal, J.M., Bernal-Oliva, A.M., Sleeckx, E., and Callaerts, R.: On the optical constants of amorphous GexSe1−x thin films of non-uniform thickness prepared by plasma-enhanced chemical vapour deposition. Vacuum 52(1–2), 55 (1999).


Related content

Powered by UNSILO

Multidimensional SPM applied for nanoscale conductance mapping

  • James L. Bosse (a1), Ilja Grishin (a2), Oleg V. Kolosov (a2) and Bryan D. Huey (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.