Skip to main content
×
Home
    • Aa
    • Aa

Multimodal visualization of the optomechanical response of silicon cantilevers with ultrafast electron microscopy

  • David J. Flannigan (a1), Daniel R. Cremons (a1) and David T. Valley (a1)
Abstract
Abstract

The manner in which structure at the mesoscale affects emergent collective dynamics has become the focus of much attention owing, in part, to new insights into how morphology on these spatial scales can be exploited for enhancement and optimization of macroscopic properties. Key to advancements in this area is development of multimodal characterization tools, wherein access to a large parameter space (energy, space, and time) is achieved (ideally) with a single instrument. Here, we describe the study of optomechanical responses of single-crystal Si cantilevers with an ultrafast electron microscope. By conducting structural-dynamics studies in both real and reciprocal space, we are able to visualize MHz vibrational responses from atomic- to micrometer-scale dimensions. With nanosecond selected-area and convergent-beam diffraction, we demonstrate the effects of spatial signal averaging on the isolation and identification of eigenmodes of the cantilever. We find that the reciprocal-space methods reveal eigenmodes mainly below 5 MHz, indicative of the first five vibrational eigenvalues for the cantilever geometry studied here. With nanosecond real-space imaging, however, we are able to visualize local vibrational frequencies exceeding 30 MHz. The heterogeneously-distributed vibrational response is mapped via generation of pixel-by-pixel time-dependent Fourier spectra, which reveal the localized high-frequency modes, whose presence is not detected with parallel-beam diffraction. By correlating the transient response of the three modalities, the oscillation, and dissipation of the optomechanical response can be compared to a linear-elastic model to isolate and identify the spatial three-dimensional dynamics.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Multimodal visualization of the optomechanical response of silicon cantilevers with ultrafast electron microscopy
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Multimodal visualization of the optomechanical response of silicon cantilevers with ultrafast electron microscopy
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Multimodal visualization of the optomechanical response of silicon cantilevers with ultrafast electron microscopy
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
a) Address all correspondence to this author. e-mail: flan0076@umn.edu
References
Hide All
1. From Quanta to the Continuum: Opportunities for Mesoscale Science. Basic Energy Sciences Advisory Committee, United States Department of Energy, 2012.
2. CrabtreeG.W. and SarraoJ.L.: Opportunities for mesoscale science. MRS Bull. 37(11), 1079 (2012).
3. YipS. and ShortM.P.: Multiscale materials modelling at the mesoscale. Nat. Mater. 12(9), 774 (2013).
4. KalininS.V. and SpaldinN.A.: Functional ion defects in transition metal oxides. Science 341(6148), 858 (2013).
5. XuS., YanZ., JangK.I., HuangW., FuH.R., KimJ., WeiZ., FlavinM., McCrackenJ., WangR., BadeaA., LiuY., XiaoD.Q., ZhouG.Y., LeeJ., ChungH.U., ChengH.Y., RenW., BanksA., LiX.L., PaikU., NuzzoR.G., HuangY.G., ZhangY.H., and RogersJ.A.: Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347(6218), 154 (2015).
6. HoffmannA. and SchultheißH.: Mesoscale magnetism. Curr. Opin. Solid State Mater. Sci. 19(4), 253 (2015).
7. ZewailA.H.: Four-Dimensional electron microscopy. Science 328(5975), 187 (2010).
8. PiazzaL., MasielD.J., LaGrangeT., ReedB.W., BarwickB., and CarboneF.: Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology. Chem. Phys. 423, 79 (2013).
9. FlanniganD.J. and ZewailA.H.: 4D electron microscopy: Principles and applications. Acc. Chem. Res. 45(10), 1828 (2012).
10. PlemmonsD.A., SuriP.K., and FlanniganD.J.: Probing structural and electronic dynamics with ultrafast electron microscopy. Chem. Mater. 27(9), 3178 (2015).
11. van der VeenR.M., KwonO-H., TissotA., HauserA., and ZewailA.H.: Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy. Nat. Chem. 5(5), 395 (2013).
12. CremonsD.R., PlemmonsD.A., and FlanniganD.J.: Femtosecond electron imaging of defect-modulated phonon dynamics. Nat. Commun. 7, 11230 (2016).
13. KhangD.Y., JiangH.Q., HuangY., and RogersJ.A.: A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311(5758), 208 (2006).
14. StauthS.A. and ParvizB.A.: Self-assembled single-crystal silicon circuits on plastic. Proc. Natl. Acad. Sci. U. S. A. 103(38), 13922 (2006).
15. KimD.H., AhnJ.H., ChoiW.M., KimH.S., KimT.H., SongJ.Z., HuangY.G.Y., LiuZ.J., LuC., and RogersJ.A.: Stretchable and foldable silicon integrated circuits. Science 320(5875), 507 (2008).
16. BoydE.J. and UttamchandaniD.: Measurement of the anisotropy of Young's modulus in single-crystal silicon. J. Microelectromech. Syst. 21(1), 243 (2012).
17. LiaoB., QiuB., ZhouJ., HubermanS., EsfarjaniK., and ChenG.: Significant reduction of lattice thermal conductivity by the electron–phonon interaction in silicon with high carrier concentrations: A first-principles study. Phys. Rev. Lett. 114(11), 115901 (2015).
18. HuY., ZengL., MinnichA.J., DresselhausM.S., and ChenG.: Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10(8), 701 (2015).
19. YurtseverA. and ZewailA.H.: 4D nanoscale diffraction observed by convergent-beam ultrafast electron microscopy. Science 326(5953), 708 (2009).
20. YurtseverA. and ZewailA.H.: Kikuchi ultrafast nanodiffraction in four-dimensional electron microscopy. Proc. Natl. Acad. Sci. U. S. A. 108(8), 3152 (2011).
21. YurtseverA., SchaeferS., and ZewailA.H.: Ultrafast Kikuchi diffraction: Nanoscale stress-strain dynamics of wave-guiding structures. Nano Lett. 12(7), 3772 (2012).
22. VoylesP.M., GrazulJ.L., and MullerD.A.: Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96(3–4), 251 (2003).
23. KwonO-H., BarwickB., ParkH.S., BaskinJ.S., and ZewailA.H.: Nanoscale mechanical drumming visualized by 4D electron microscopy. Nano Lett. 8(11), 3557 (2008).
24. FlanniganD.J., SamartzisP.C., YurtseverA., and ZewailA.H.: Nanomechanical motions of cantilevers: Direct imaging in real space and time with 4D electron microscopy. Nano Lett. 9(2), 875 (2009).
25. FlanniganD.J., ParkS.T., and ZewailA.H.: Nanofriction visualized in space and time by 4D electron microscopy. Nano Lett. 10(11), 4767 (2010).
26. KwonO.H., ParkH.S., BaskinJ.S., and ZewailA.H.: Nonchaotic nonlinear motion visualized in complex nanostructures by stereographic 4D electron microscopy. Nano Lett. 10(8), 3190 (2010).
27. BaskinJ.S., ParkH.S., and ZewailA.H.: Nanomusical systems visualized and controlled in 4D electron microscopy. Nano Lett. 11(5), 2183 (2011).
28. LorenzU.J. and ZewailA.H.: Biomechanics of DNA structures visualized by 4D electron microscopy. Proc. Natl. Acad. Sci. U. S. A. 110(8), 2822 (2013).
29. FitzpatrickA.W.P., ParkS.T., and ZewailA.H.: Exceptional rigidity and biomechanics of amyloid revealed by 4D electron microscopy. Proc. Natl. Acad. Sci. U. S. A. 110(27), 10976 (2013).
30. FitzpatrickA.W.P., VanacoreG.M., and ZewailA.H.: Nanomechanics and intermolecular forces of amyloid revealed by four-dimensional electron microscopy. Proc. Natl. Acad. Sci. U. S. A. 112(11), 3380 (2015).
31. KieftE., SchliepK.B., SuriP.K., and FlanniganD.J.: Effects of thermionic-gun parameters on operating modes in ultrafast electron microscopy. Struct. Dyn. 2(5), 051101 (2015).
32. SpenceJ.C.H. and ZuoJ.M.: Electron Microdiffraction (Plenum Press, New York, 1992).
33. HuangW.J., SunR., TaoJ., MenardL.D., NuzzoR.G., and ZuoJ.M.: Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat. Mater. 7(4), 308 (2008).
34. FultzB. and HoweJ.M.: Transmission Electron Microscopy and Diffractometry of Materials (Springer, New York, 2013).
35. AmelinckxS., GeversR., and Van LanduytJ. eds.: Diffraction and Imaging Techniques in Material Science (North-Holland Pub. Co., New York, 1978).
36. FlanniganD.J. and ZewailA.H.: Optomechanical and crystallization phenomena visualized with 4D electron microscopy: Interfacial carbon nanotubes on silicon nitride. Nano Lett. 10(5), 1892 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary Materials

Flannigan supplementary material S2
Flannigan supplementary material

 Word (14 KB)
14 KB
WORD
Supplementary Materials

Flannigan supplementary material S1
Flannigan supplementary material

 Word (1.8 MB)
1.8 MB

Metrics

Full text views

Total number of HTML views: 22
Total number of PDF views: 210 *
Loading metrics...

Abstract views

Total abstract views: 580 *
Loading metrics...

* Views captured on Cambridge Core between 3rd October 2016 - 20th October 2017. This data will be updated every 24 hours.