Skip to main content Accessibility help
×
×
Home

Multiscale imaging and transport modeling for fuel cell electrodes

  • Jasna Jankovic (a1), Shawn Zhang (a2), Andreas Putz (a3), Madhu S. Saha (a4) and Darija Susac (a4)...
Abstract

Transport properties, performance, and durability of a proton exchange fuel cell (PEMFC) highly depend on microstructure and spatial distribution of components in the gas diffusion layer (GDL), microporous layer (MPL), and catalyst layers (CLs) of the fuel cell. Modeling of transport properties and understanding of these effects are challenging due to limited understanding of actual three-dimensional (3D) structure of the components, especially over a wide range of length scales. In this work, 3D imaging on multiple scales, namely electron tomography on a nanoscale, focused ion beam–scanning electron microscopy on a microscale, and 3D X-ray microscopy on a macroscale, was applied to obtain 3D reconstructions of the actual CL, MPL, and GDL microstructure. Direct numerical simulations on 3D data sets with an upscaling approach were applied to demonstrate the capability to simulate overall electrical conductivity of the system. Details of the process, challenges, and results are described.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: jasna.jankovic@uconn.edu
References
Hide All
1.Kojima, K. and Fukazawa, K.: Current status and future outlook of fuel cell vehicle development in toyota. ECS Trans. 69, 231 (2015).
2.Hoogers, G.: Fuel Cell Technology Handbook (CRC Press LLC, Boca Raton, London, New York, Washington, D.C., 2003); pp. 88104.
3.Barbir, F.: PEM Fuel Cells: Theory and Practice, 2nd ed. (Academic Press, Cambridge, Massachusetts, 2005); pp. 73112.
4.More, K., Borup, R., and Reeves, K.: Identifying contributing degradation phenomena in PEM fuel cell membrane electrode assemblies via electron microscopy. ECS Trans. 3, 717 (2006).
5.Lopez-Haro, M., Guétaz, L., Printemps, T., Morin, A., Escribano, S., Jouneau, P.H., Bayle-Guillemaud, P., Chandezon, F., and Gebel, G.: Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat. Commun. 5, 5229 (2014).
6.Enz, S., Dao, T.A., Messerschmidt, M., and Scholta, J.: Investigation of degradation effects in polymer electrolyte fuel cells under automotive-related operating conditions. J. Power Sources 274, 521 (2015).
7.Secanell, M., Jarauta, A., Kosakian, A., Sabharwal, M. and Zhou, J.: Encyclopedia of Sustainability Science and Technology, 2nd ed. (Springer-Verlag, New York, New York, 2017); ch. 37.
8.Weber, A.Z., Borup, R.L., Darling, R.M., Das, P.K., Dursch, T.J., Gu, W., Harvey, D., Kusoglu, A., Litster, S., Mench, M.M., Mukundan, R., Owejan, J.P., Pharoah, J., Secanell, M., and Zenyuk, I.V.: A Critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J. Electrochem. Soc. 161, F1254 (2014).
9.Secanell, M., Karan, K., Suleman, A., and Djilali, N.: Multi-variable optimization of PEMFC cathodes using an agglomerate model. Electrochim. Acta 52, 6318 (2007).
10.Cetinbas, F.C., Advani, S.G., and Prasad, A.K.: Three dimensional proton exchange membrane fuel cell cathode model using a modified agglomerate approach based on discrete catalyst particles. J. Power Sources 250, 110 (2014).
11.Epting, W.K. and Litster, S.: Effects of an agglomerate size distribution on the PEFC agglomerate model. Int. J. Hydrogen Energy 37, 8505 (2012).
12.Cetinbas, F.C., Ahluwalia, R.K., Kariuki, N., De Andrade, V., Fongalland, D., Smith, L., Sharman, J., Ferreira, P., Rasouli, S., and Myers, D.J.: Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes. J. Power Sources 344, 62 (2017).
13.Thiele, S., Fürstenhaupt, T., Banham, D., Hutzenlaub, T., Birss, V., Ziegler, C., and Zengerle, R.: Multiscale tomography of nanoporous carbon-supported noble metal catalyst layers. J. Power Sources 228, 185 (2013).
14.Sabharwal, M., Pant, L.M., Putz, A., Susac, D., Jankovic, J., and Secanell, M.: Analysis of catalyst layer microstructures: From imaging to performance. Fuel Cells 16, 734 (2016).
15.Ziegler, C., Thiele, S., and Zengerle, R.: Direct three-dimensional reconstruction of a nanoporous catalyst layer for a polymer electrolyte fuel cell. J. Power Sources 196, 2094 (2011).
16.Epting, W.K., Gelb, J., and Litster, S.: Resolving the three-dimensional microstructure of polymer electrolyte fuel cell electrodes using nanometer scale X-ray computed tomography. Adv. Funct. Mater. 22, 555 (2012).
17.Jankovic, J., Susac, D., Soboleva, T., and Stumper, J.: Electron tomography based 3D reconstruction of fuel cell catalysts layers. ECS Trans. 50, 353 (2012).
18.Leary, R., Midgley, P.A., and Thomas, J.M.: Recent advances in the application of electron tomography to materials chemistry. Acc. Chem. Res. 45, 1782 (2012).
19.Boas, F.E. and Fleischmann, D.: CT artifacts: Causes and reduction techniques. Imaging Med. 4, 229 (2012).
20.Salzer, M., Thiele, S., Zengerle, R., and Schmidt, V.: On the importance of FIB-SEM specific segmentation algorithms for porous media. Mater. Charact. 95, 36 (2014).
21.Inoue, G., Yokoyama, K., Ooyama, J., Terao, T., Tokunaga, T., Kubo, N., and Kawase, M.: Theoretical examination of effective oxygen diffusion coefficient and electrical conductivity of polymer electrolyte fuel cell porous components. J. Power Sources 327, 610 (2016).
22.Inoue, G. and Kawase, M.: Effect of porous structure of catalyst layer on effective oxygen diffusion coefficient in polymer electrolyte fuel cell. J. Power Sources 327, 1 (2016).
23.Eikerling, M.: Water management in cathode catalyst layers of PEM fuel cells. J. Electrochem. Soc. 153, E58 (2006).
24.Garboczi, E.J., Bentz, D.P., and Martys, N.S.: Digital images and computer modeling. Exp. Methods Phys. Sci. 35, 1 (1999).
25.Oberbroeckling, K.J., Dunwoody, D.C., Minteer, A.S.D., and Leddy, J.: Density of Nafion exchanged with transition metal complexes and tetramethyl ammonium, ferrous, and hydrogen ions: commercial and recast films. Anal. Chem. 74, 4794 (2002).
26.DigiM I2S AI image processing whitepaper (2018). Available at: http://www.digimsolution.com/documents/32/AI_image_processing_2017JUL29.pdf (accessed March 15, 2018).
27.Lezoray, O., Charrier, C., Cardot, H., and Lefevre, S., eds.: Machine learning in image processing. EURASIP J. Adv. Signal Process, December 2008, 927950 (2008).
28.Shukla, S., Stanier, D., Saha, M.S., Zahiri, B., Tam, M., Stumper, J., and Secanell, M.: Characterization of inkjet printed electrodes with improved porosity. ECS Trans. 77, 1453 (2017).
29.Bird, R.B., Warren, E. Stewart, and Lightfoot, E.N.: Transport Phenomena, 2nd ed. (John Wiley & Sons, Inc., New York, NY, 2007); pp. 7783.
30.Blunt, M.J.: Flow in porous media pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6, 197 (2001).
31.DigiM I2S Software: Available at: http://www.digimsolution.com/services/image-simulation/.
32.Secanell Gallart, M.: Computational Modeling and Optimization of Proton Exchange Membrane Fuel Cells (Thesis, Victoria, 2007).
33.Pantea, D., Darmstadt, H., Kaliaguine, S., Sümmchen, L., and Roy, C.: Electrical conductivity of thermal carbon blacks: Influence of surface chemistry. Carbon 39, 1147 (2001).
34.Antolini, E.: Carbon supports for low-temperature fuel cell catalysts. Appl. Catal., B 88, 1 (2009).
35.Du, C.Y., Shi, P.F., Cheng, X.Q., and Yin, G.P.: Effective protonic and electronic conductivity of the catalyst layers in proton exchange membrane fuel cells. Electrochem. Commun. 6, 435 (2004).
36.Suzuki, T., Murata, H., Hatanaka, T., and Morimoto, Y.: Analysis of the catalyst layer of polymer electrolyte fuel cells. R&D Rev. Toyota CRDL 39, 3338 (2004).
37.Gregr, J. and Šafarova, V.: Electrical conductivity measurement of fibers and yarns. In 7th International Conference—TEXSCI 2010 (Czech Republic, 2010).
38.El-Kharouf, A., Mason, T.J., Brett, D.J.L., and Pollet, B.G.: Ex situ characterisation of gas diffusion layers for proton exchange membrane fuel cells. J. Power Sources 218, 393 (2012).
39.Zhou, T. and Liu, H.: Effects of the electrical resistances of the GDL in a PEM fuel cell. J. Power Sources 161, 444 (2006).
40.Mathias, M., Roth, J., Fleming, J. and Lehnert, W.: Handbook of Fuel Cells—Fundamentals, Technology and Applications (Wiley, New York, 2010); ch. 46.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Jankovic et al. supplementary material
Figure S1

 Word (932 KB)
932 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed