Skip to main content
×
Home
    • Aa
    • Aa

Nanoindentation and incipient plasticity

  • E. B. Tadmor (a1), R. Miller (a1), R. Phillips (a1) and M. Ortiz (a2)
Abstract

This paper presents a large-scale atomic resolution simulation of nanoindentation into a thin aluminum film using the recently introduced quasicontinuum method. The purpose of the simulation is to study the initial stages of plastic deformation under the action of an indenter. Two different crystallographic orientations of the film and two different indenter geometries (a rectangular prism and a cylinder) are studied. We obtain both macroscopic load versus indentation depth curves, as well as microscopic quantities, such as the Peierls stress and density of geometrically necessary dislocations beneath the indenter. In addition, we obtain detailed information regarding the atomistic mechanisms responsible for the macroscopic curves. A strong dependence on geometry and orientation is observed. Two different microscopic mechanisms are observed to accommodate the applied loading: (i) nucleation and subsequent propagation into the bulk of edge dislocation dipoles and (ii) deformation twinning.

Copyright
Corresponding author
c)Address all correspondence to this author. e-mail: phillips@engin.brown.edu
References
Hide All
1.Nix W.D., Metall. Trans. A 20A, 2217 (1989).
2.Sutton A. P. and Pethica J. B., J. Phys.: Condens. Matter 2, 5317 (1990).
3.McClintock F. A. and Argon A. S., Mechanical Behavior of Materials (Addison-Wesley, Reading, MA, 1966), Chap. 13.
4.Sharp S. J., Ashby M. F., and Fleck N. A., Acta Metall. Mater. 41, 685 (1993).
5.Gerberich W.W., Nelson J. C., Lilleodden E.T., Anderson P., and Wyrobek J. T., Acta Mater. 44, 3585 (1996).
6.Gane N. and Bowden F. P., J. Appl. Phys. 39, 1432 (1968).
7.Nowak R., Li C. L., and Maruno S., J. Mater. Res. 12, 64 (1997).
8.Tangyunyong P., Thomas R.C., Houston J. E., Michalske T. A., Crooks R. M., and Howard A. J., Phys. Rev. Lett. 71, 3319 (1993).
9.Pharr G. M. and Oliver W. C., J. Mater. Res. 4, 94 (1989).
10.Landman U., Luedtke W. D., Burnham N. A., and Colton R. J., Science 248, 454 (1990).
11.Kallman J. S., Hoover W.G., Hoover C. G., De Groot A. J., Lee S. M., and Wooten F., Phys. Rev. B 47, 7705 (1993).
12.Belak J., Glosli J. N., Boercker D. B., and Stowers I. F., in Modelling and Simulation of Thin-Film Processing, edited by Srolovitz D., Volkert C. A., Fluss M. J., and Kee R. J. (Mater. Res. Soc. Symp. Proc. 389, Pittsburgh, PA, 1995), p. 181.
13.Tadmor E. B., The Quasicontinuum Method, Ph.D. Thesis, Brown University, 1996.
14.Tadmor E. B., Ortiz M., and Phillips R., Philos. Mag. A73, 1529 (1996).
15.Tadmor E. B., Phillips R., and Ortiz M., Langmuir 12, 4529 (1996).
16.Shenoy V. B., Miller R., Tadmor E. B., Phillips R., and Ortiz M., Phys. Rev. Lett. 80, 742 (1998).
17.Shenoy V. B., Miller R., Tadmor E. B., Rodney D., Phillips R., and Ortiz M., J. Mech. Phys. Solids 47, 611 (1999).
18.Zienkiewicz O. C. and Taylor R. L., The Finite Element Method, 4th ed. (McGraw-Hill, London, 1989).
19.Daw M.S. and Baskes M. I., Phys. Rev. Lett. 50, 1285 (1983).
20.Daw M.S., Many-Atom Interactions in Solids, Springer Proceedings in Physics (Springer-Verlag, Berlin, 1990), Vol. 48, p. 48.
21.Ercolessi F. and Adams J., Europhys. Lett. 26, 583 (1994).
22.Hirth J. P. and Lothe J., Theory of Dislocations, 2nd ed. (Krieger, Malabar, FL, 1992), pp. 317, 424.
23.Muskhelishvili N.I., Some Basic Problems of the Mathematical Theory of Elasticity, 3rd ed. (P. Noordhoff Ltd., Groningen, The Netherlands, 1953), pp. 481483.
24.Kulkarni A.V. and Bhushan B., Mater. Lett. 29, 221 (1996).
25.Ma Q. and Clarke D. R., J. Mater. Res. 10, 853 (1995).
26.Mills M.J. and Stadelmann P., Philos. Mag. A 60, 355 (1989).
27.Friedel J., Dislocations (Addison-Wesley, Reading, MA, 1967), pp. 40, 45, 54, 230.
28.Kosugi T. and Kino T., Mater. Sci. Eng. A 164, 368 (1993).
29.Egami T. and Srolovitz D., J. Phys. F: Met. Phys. 12, 2141 (1982).
30.Vitek V. and Egami T., Phys. Status Solidi B 144, 145 (1987).
31.François D., Pineau A., and Zaoui A., Comportement Mecanique des Materiaux (elasticite et plasticite), 3rd ed. (Hermes, Paris, 1995), pp. 189190.
32.Nix W.D., Mater. Sci. Eng. A234, 37 (1997).
33.Doerner M.F. and Nix W. D., J. Mater. Res. 1, 601 (1986).
34.Venables J. A., in Deformation Twinning, Proceedings of the Metallurgical Society Conference, edited by Reed-Hill R. E. (Gordon and Breach Science Publishers, 1963), Vol. 25, p. 77.
35.Rosakis P. and Tsai H., Mech. Mater. 17, 245 (1994).
36.Pond R.C. and Garcia-Garcia L. M. F., Inst. Phys. Conf. Ser., No. 61, 495 (1981).
37.Kelchner C.L., Plimpton S.J., and Hamilton J.C., Phys. Rev. B 58, 11085 (1998).
38.Kelly A. and Groves G.W., Crystallography and Crystal Defects (Addison-Wesley, Reading, MA, 1970), p. 311.
39.Kubin L., Canova G., Condat M., Devincre B., Pontikis V., and Bréchet Y., Solid State Phenom. 23 & 24, 455 (1992).
40.Fivel M., Verdier M., and Canova G., Mater. Sci. Eng. A234–236, 923 (1997).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 36 *
Loading metrics...

Abstract views

Total abstract views: 124 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th October 2017. This data will be updated every 24 hours.