Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T19:52:13.238Z Has data issue: false hasContentIssue false

Nanoindentation and nanoscratch behavior of ZnO:Pr thin films deposited by DC sputtering

Published online by Cambridge University Press:  07 August 2018

Vipul Bhardwaj
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
Ashwani Kumar
Affiliation:
Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee-247667, India
Rajib Chowdhury
Affiliation:
Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
Rengaswamy Jayaganthan*
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, India; and Department of Engineering Design, Indian Institute of Technology Madras, Chennai-600036, India
*
a)Address all correspondence to this author. e-mail: rjayafmt@iitr.ac.in, edjay@iitm.ac.in
Get access

Abstract

Mechanical properties of Pr (praseodymium)-doped ZnO thin films, deposited on a corning glass substrate and fused quartz at different deposition pressures using DC sputtering were investigated. Crystalline growth in Pr-doped ZnO thin films is more pronounced and improves at 10 mtorr deposition pressure. However, lower sputtering deposition pressure evoked deposition rates to the formation of polycrystalline films emerged in several crystal planes. Pr ions incorporated in the ZnO host lattice was examined by X-ray photoelectron spectroscopy (XPS), AFM, and FESEM. XPS spectroscopy revealed the presence of Pr3+ and Pr4+ at the ZnO surface layer and it was in tandem with EDS mapping. Nanoindentation prior to scratch testing is used for analyzing deformation characteristics. Pr-doped ZnO thin films exhibit better hardness (9.89 ± 0.14 GPa) and Young’s modulus (112.12 ± 3.45 GPa) on the glass substrate. The crack propagation resistance parameter of the films was evaluated using initial critical load, Lc1 ∼ 2250.5 µN for the crack initiation and upper critical load Lc2 ∼ 2754.5 µN for film failure. Better crack propagation resistance was observed for films deposited at 10 mtorr sputtering pressure on both substrates, attributed to better crystalline nature of the films.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., Avrutin, V., Cho, S-J., and Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
Klingshirn, C.F., Waag, A., Hoffmann, A., and Geurts, J.: Zinc Oxide: From Fundamental Properties towards Novel Applications (Springer Science & Business Media, Germany, 2010).CrossRefGoogle Scholar
Norton, D.P., Heo, Y.W., Ivill, M.P., Ip, K., Pearton, S.J., Chisholm, M.F., and Steiner, T.: ZnO: Growth, doping & processing. Mater. Today 7, 34 (2004).CrossRefGoogle Scholar
Daksh, D. and Agrawal, Y.K.: Rare earth-doped zinc oxide nanostructures: A review. Rev. Nanosci. Nanotechnol. 5, 1 (2016).CrossRefGoogle Scholar
Bhardwaj, V., Chowdhury, R., and Jayaganthan, R.: Adhesion strength and nanomechanical characterization of ZnO thin films. J. Mater. Res. 32, 1432 (2017).CrossRefGoogle Scholar
Marouf, S., Beniaiche, A., Kardarian, K., Mendes, M.J., Sanchez-Sobrado, O., Águas, H., Fortunato, E., and Martins, R.: Low-temperature spray-coating of high-performing ZnO:Al films for transparent electronics. J. Anal. Appl. Pyrolysis 127, 299 (2017).CrossRefGoogle Scholar
Perrière, J., Jedrecy, N., Millon, E., Cachoncinlle, C., Talbi, A., Demange, V., Guilloux-Viry, M., and Nistor, M.: Epitaxial growth of non-polar ZnO films on MgO substrate. Thin Solid Films 652, 34 (2018).CrossRefGoogle Scholar
Lin, C., Chen, R., Lin, Y., Wang, S., Chen, L., Chen, K., Wen, M., Chou, M., and Chang, L.: Photoconduction properties and anomalous power-dependent quantum efficiency in non-polar ZnO epitaxial films grown by chemical vapor deposition. Appl. Phys. Lett. 110, 052101 (2017).CrossRefGoogle Scholar
Hsieh, W-C., Wadekar, P.V., Liu, H-H., Lee, C-H., Chang, C-F., Tu, L-W., You, S-T., Chen, Q.Y., Huang, H-C., and Ho, N-J.: Water-modulated oxidation in the growth of m-ZnO epitaxial thin film by atomic layer deposition. J. Vac. Sci. Technol., A 35, 021511 (2017).CrossRefGoogle Scholar
Jacob, A.A., Balakrishnan, L., Meher, S., Shambavi, K., and Alex, Z.: Structural, optical and photodetection characteristics of Cd alloyed ZnO thin film by spin coating. J. Alloys Compd. 695, 3753 (2017).CrossRefGoogle Scholar
Kelly, P. and Arnell, R.: Magnetron sputtering: A review of recent developments and applications. Vacuum 56, 159 (2000).CrossRefGoogle Scholar
Dakhel, A.: Nanocrystalline Pr-doped ZnO insulator for metal–insulator–Si Schottky diodes. J. Cryst. Growth 311, 4183 (2009).CrossRefGoogle Scholar
Anandan, S., Vinu, A., Sheeja Lovely, K.L.P., Gokulakrishnan, N., Srinivasu, P., Mori, T., Murugesan, V., Sivamurugan, V., and Ariga, K.: Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J. Mol. Catal. A: Chem. 266, 149 (2007).CrossRefGoogle Scholar
Zheng, J., Song, J., Jiang, Q., and Lian, J.: Enhanced UV emission of Y-doped ZnO nanoparticles. Appl. Surf. Sci. 258, 6735 (2012).CrossRefGoogle Scholar
Xu, D., He, K., Yu, R., Tong, Y., Qi, J., Sun, X., Yang, Y., Xu, H., Yuan, H., and Ma, J.: Microstructure and electrical properties of praseodymium oxide doped Bi2O3 based ZnO varistor films. Mater. Technol. 30, A24 (2015).CrossRefGoogle Scholar
Hsiao, C-C. and Yu, S-Y.: Electrode layout of ZnO pyroelectric sensors. J. Mech. Sci. Technol. 25, 2835 (2011).CrossRefGoogle Scholar
Senda, T. and Bradt, R.C.: Grain growth in sintered ZnO and ZnO–Bi2O3 ceramics. J. Am. Ceram. Soc. 73, 106 (1990).CrossRefGoogle Scholar
Wang, Y., Peng, Z., Wang, Q., Wang, C., and Fu, X.: High-performance varistors simply by hot-dipping zinc oxide thin films in Pr6O11: Influence of temperature. Sci. Rep. 7, 41994 (2017).CrossRefGoogle ScholarPubMed
Li, H., Meng, J., Liu, Y., Zhang, B., and Cheng, G.: Effect of Pr doping on the photoelectric properties of ZnO transparent conducting thin films. Mater. Rev. 29, 1115 (2015).Google Scholar
Divya, N. and Pradyumnan, P.: Photoluminescence quenching and photocatalytic enhancement of Pr doped ZnO nanocrystals. Bull. Mater. Sci. 40, 1405 (2017).CrossRefGoogle Scholar
Balestrieri, M., Gallart, M., Ziegler, M., Bazylewski, P., Ferblantier, G., Schmerber, G., Chang, G., Gilliot, P., Muller, D., and Slaoui, A.: Luminescent properties and energy transfer in Pr3+ doped and Pr3+–Yb3+ Co-doped ZnO thin films. J. Phys. Chem. C 118, 13775 (2014).CrossRefGoogle Scholar
Bull, S.: Nanoindentation of coatings. J. Phys. D: Appl. Phys. 38, R393 (2005).CrossRefGoogle Scholar
Shi, C., Zhao, H., Huang, H., Wan, S., Ma, Z., Geng, C., and Ren, L.: Effects of probe tilt on nanoscratch results: An investigation by finite element analysis. Tribol. Int. 60, 64 (2013).CrossRefGoogle Scholar
Fu, K., Chang, L., Yang, C., Sheppard, L., Wang, H., Maandal, M., and Ye, L.: Plastic behaviour of high-strength lightweight Al/Ti multilayered films. J. Mater. Sci. 52, 13956 (2017).CrossRefGoogle Scholar
Kucheyev, S., Bradby, J., Williams, J., Jagadish, C., and Swain, M.: Mechanical deformation of single-crystal ZnO. Appl. Phys. Lett. 80, 956 (2002).CrossRefGoogle Scholar
Kang, N-R., Kim, Y-C., Jeon, H., Kim, S.K., Jang, J-i., Han, H.N., and Kim, J-Y.: Wall-thickness-dependent strength of nanotubular ZnO. Sci. Rep. 7, 4327 (2017).CrossRefGoogle ScholarPubMed
Tiwary, N., Kushagra, A., Kandpal, M., and Rao, V.R.: Experimental and theoretical analyses of effect of ZnO nanowire growth on mechanical properties of microcantilevers for dynamic sensing applications. In SENSORS, 2016 (IEEE, USA, 2016); p. 1.Google Scholar
Juday, R., Silva, E.M., Huang, J.Y., Caldas, P.G., Prioli, R., and Ponce, F.: Strain-related optical properties of ZnO crystals due to nanoindentation on various surface orientations. J. Appl. Phys. 113, 183511 (2013).CrossRefGoogle Scholar
Yuan, N., Wang, S., Tan, C., Wang, X., Chen, G., and Ding, J.: The influence of deposition temperature on growth mode, optical and mechanical properties of ZnO films prepared by the ALD method. J. Cryst. Growth 366, 43 (2013).CrossRefGoogle Scholar
Yen, C-Y., Jian, S-R., Chen, G-J., Lin, C-M., Lee, H-Y., Ke, W-C., Liao, Y-Y., Yang, P-F., Wang, C-T., and Lai, Y-S.: Influence of annealing temperature on the structural, optical and mechanical properties of ALD-derived ZnO thin films. Appl. Surf. Sci. 257, 7900 (2011).CrossRefGoogle Scholar
Fang, T-H., Chang, W-J., and Lin, C-M.: Nanoindentation characterization of ZnO thin films. Mater. Sci. Eng., A 452–453, 715 (2007).CrossRefGoogle Scholar
Wang, S-K., Lin, T-C., Jian, S-R., Juang, J-Y., Jang, J.S-C., and Tseng, J-Y.: Effects of post-annealing on the structural and nanomechanical properties of Ga-doped ZnO thin films deposited on glass substrate by rf-magnetron sputtering. Appl. Surf. Sci. 258, 1261 (2011).CrossRefGoogle Scholar
Zhao, S., Zhou, Y., Liu, Y., Zhao, K., Wang, S., Xiang, W., Liu, Z., Han, P., Zhang, Z., and Chen, Z.: Enhanced hardness in B-doped ZnO thin films on fused quartz substrates by pulsed-laser deposition. Appl. Surf. Sci. 253, 726 (2006).CrossRefGoogle Scholar
Venkaiah, M. and Singh, R.: Effect of thickness on structural, optical and mechanical properties of Mn doped ZnO nanocrystalline thin films RF sputtered in nitrogen gas environment. Superlattices Microstruct. 72, 164 (2014).CrossRefGoogle Scholar
Yun, Z., Yue, W., Peng-Fei, W., Hong-Yu, L., and Shou-Yu, W.: Optical and mechanical properties of transparent conductive Al-doped ZnO films deposited by the sputtering method. Chin. Phys. Lett. 29, 038103 (2012).Google Scholar
Huang, Y-C. and Chang, S-Y.: Substrate effect on mechanical characterizations of aluminum-doped zinc oxide transparent conducting films. Surf. Coat. Technol. 204, 3147 (2010).CrossRefGoogle Scholar
Bradby, J., Kucheyev, S., Williams, J., Jagadish, C., Swain, M., Munroe, P., and Phillips, M.: Contact-induced defect propagation in ZnO. Appl. Phys. Lett. 80, 4537 (2002).CrossRefGoogle Scholar
Sagalowicz, L. and Fox, G.R.: Planar defects in ZnO thin films deposited on optical fibers and flat substrates. J. Mater. Res. 14, 1876 (1999).CrossRefGoogle Scholar
Cullity, B.D. and Weymouth, J.W.: Elements of X-ray diffraction. Am. J. Phys. 25, 394 (1957).CrossRefGoogle Scholar
Stokes, A. and Wilson, A.: The diffraction of X-rays by distorted crystal aggregates-I. Proc. Phys. Soc., London, Sect. A 56, 174 (1944).CrossRefGoogle Scholar
Kolodziejczyk, L., Szymanski, W., Batory, D., and Jedrzejczak, A.: Nanotribology of silver and silicon doped carbon coatings. Diamond Relat. Mater. 67, 8 (2016).CrossRefGoogle Scholar
Gouldstone, A., Koh, H-J., Zeng, K-Y., Giannakopoulos, A., and Suresh, S.: Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277 (2000).CrossRefGoogle Scholar
Tsui, T., Oliver, W., and Pharr, G.: Indenter geometry effects on the measurement of mechanical properties by nanoindentation with sharp indenters. MRS Online Proc. Libr. 436, 147 (1996).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Zhang, S.: Nanostructured Thin Films and Coatings: Mechanical Properties (CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2010).CrossRefGoogle Scholar
Fischer-Cripps, A.: Nanoindentation (Springer, New York, 2004).CrossRefGoogle Scholar
Tian, Q. and Liu, H.: Electrophoretic deposition and characterization of nanocomposites and nanoparticles on magnesium substrates. Nanotechnology 26, 175102 (2015).CrossRefGoogle ScholarPubMed
He, H-Y.: Microstructural, optical and electrical properties of ZnO:Pr thin films: Pr-doping level effect. Micro Nanosyst. 8, 19 (2016).CrossRefGoogle Scholar
Dave, V., Dubey, P., Gupta, H., and Chandra, R.: Influence of sputtering pressure on the structural, optical and hydrophobic properties of sputtered deposited HfO2 coatings. Thin Solid Films 549, 2 (2013).CrossRefGoogle Scholar
Bao, D., Gu, H., and Kuang, A.: Sol–gel-derived c-axis oriented ZnO thin films. Thin Solid Films 312, 37 (1998).CrossRefGoogle Scholar
Kim, M.S., Yim, K.G., Cho, M.Y., Leem, J.Y., Lee, D.Y., Kim, J.S., Kim, J.S., and Son, J.S.: Post-annealing effects on the structural and the optical properties of ZnO thin films grown by using the hydrothermal method. J. Korean. Phys. Soc 58, 515 (2011).CrossRefGoogle Scholar
Armelao, L., Bottaro, G., Pascolini, M., Sessolo, M., Tondello, E., Bettinelli, M., and Speghini, A.: Structure–luminescence correlations in europium-doped sol–gel ZnO nanopowders. J. Phys. Chem. C 112, 4049 (2008).CrossRefGoogle Scholar
Wang, C., Tan, X., Chen, S., Yuan, R., Hu, F., Yuan, D., and Xiang, Y.: Highly-sensitive cholesterol biosensor based on platinum–gold hybrid functionalized ZnO nanorods. Talanta 94, 263 (2012).CrossRefGoogle ScholarPubMed
Basu, T., Kumar, M., Nandy, S., Satpati, B., Saini, C.P., Kanjilal, A., and Som, T.: Thickness-dependent blue shift in the excitonic peak of conformally grown ZnO:Al on ion-beam fabricated self-organized Si ripples. J. Appl. Phys. 118, 104903 (2015).CrossRefGoogle Scholar
Phillips, J.M.: Substrate selection for thin-film growth. MRS Bull. 20, 35 (1995).CrossRefGoogle Scholar
Banerjee, A., Ghosh, C., Chattopadhyay, K., Minoura, H., Sarkar, A.K., Akiba, A., Kamiya, A., and Endo, T.: Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique. Thin Solid Films 496, 112 (2006).CrossRefGoogle Scholar
Sung, T., Huang, J., and Chen, H.: Mechanical response of polar/non-polar ZnO under low dimensional stress. Appl. Phys. Lett. 102, 241901 (2013).CrossRefGoogle Scholar
Coleman, V., Bradby, J., Jagadish, C., Munroe, P., Heo, Y., Pearton, S., Norton, D., Inoue, M., and Yano, M.: Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire. Appl. Phys. Lett. 86, 203105 (2005).CrossRefGoogle Scholar
Navamathavan, R., Kim, K-K., Hwang, D-K., Park, S-J., Hahn, J-H., Lee, T.G., and Kim, G-S.: A nanoindentation study of the mechanical properties of ZnO thin films on (0001) sapphire. Appl. Surf. Sci. 253, 464 (2006).CrossRefGoogle Scholar
Lin, L-Y., Jeong, M-C., Kim, D-E., and Myoung, J-M.: Micro/nanomechanical properties of aluminum-doped zinc oxide films prepared by radio frequency magnetron sputtering. Surf. Coat. Technol. 201, 2547 (2006).CrossRefGoogle Scholar
Kataria, S., Goyal, S., Dash, S., Sandhya, R., Mathew, M., and Tyagi, A.: Evaluation of nano-mechanical properties of hard coatings on a soft substrate. Thin Solid Films 522, 297 (2012).CrossRefGoogle Scholar
Kataria, S., Goyal, S., Dash, S., and Tyagi, A.K.: Nanomechanical characterization of thermally evaporated Cr thin films—FE analysis of the substrate effect. Thin Solid Films 519, 312 (2010).CrossRefGoogle Scholar
Roy, T.K.: Assessing hardness and fracture toughness in sintered zinc oxide ceramics through indentation technique. Mater. Sci. Eng., A 640, 267 (2015).CrossRefGoogle Scholar
Patriarche, G., Glas, F., Le Roux, G., Largeau, L., Mereuta, A., Ougazzaden, A., and Benchimol, J.: TEM study of the morphological and compositional instabilities of InGaAsP epitaxial structures. J. Cryst. Growth 221, 12 (2000).CrossRefGoogle Scholar
Li, J., Van Vliet, K.J., Zhu, T., Yip, S., and Suresh, S.: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307 (2002).CrossRefGoogle ScholarPubMed
Musil, J.: Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf. Coat. Technol. 207, 50 (2012).CrossRefGoogle Scholar
Benjamin, P. and Weaver, C.: Measurement of adhesion of thin films. Proc. R. Soc. London, Ser. A 254, 163 (1960).CrossRefGoogle Scholar
Bhardwaj, V., Chowdhury, R., and Jayaganthan, R.: Nanomechanical and microstructural characterization of sputter deposited ZnO thin films. Appl. Surf. Sci. 389, 1023 (2016).CrossRefGoogle Scholar
Zhang, S., Sun, D., Fu, Y., and Du, H.: Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films. Thin Solid Films 447, 462 (2004).CrossRefGoogle Scholar
Kabir, M.S., Munroe, P., Zhou, Z., and Xie, Z.: Scratch adhesion and tribological behaviour of graded Cr/CrN/CrTiN coatings synthesized by closed-field unbalanced magnetron sputtering. Wear 380–381, 163 (2017).CrossRefGoogle Scholar
Ni, W., Cheng, Y-T., Lukitsch, M., Weiner, A.M., Lev, L.C., and Grummon, D.S.: Novel layered tribological coatings using a superelastic NiTi interlayer. Wear 259, 842 (2005).CrossRefGoogle Scholar
Bhushan, B. and Li, X.: Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. J. Mater. Res. 12, 54 (1997).CrossRefGoogle Scholar
Jian, S-R., Teng, I-J., Yang, P-F., Lai, Y-S., Lu, J-M., Chang, J-G., and Ju, S-P.: Surface morphological and nanomechanical properties of PLD-derived ZnO thin films. Nanoscale Res. Lett. 3, 186 (2008).CrossRefGoogle Scholar
Supplementary material: File

Bhardwaj et al. supplementary material

Bhardwaj et al. supplementary material 1

Download Bhardwaj et al. supplementary material(File)
File 279 KB