Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T08:50:26.977Z Has data issue: false hasContentIssue false

Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate

Published online by Cambridge University Press:  03 March 2011

A.J. Bushby
Affiliation:
Department of Materials, Queen Mary, University of London, London E1 4NS, United Kingdom
V.L. Ferguson
Affiliation:
Department of Materials, Queen Mary, University of London, London E1 4NS, and Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
A. Boyde
Affiliation:
Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, and Dental Biophysics, Centre for Oral Growth and Development, Queen Mary, University of London, Institute of Dentistry, London E1 2AD, United Kingdom
Get access

Abstract

Elastic modulus of bone was investigated by nanoindentation using common methods of sample preparation, data collection, and analysis, and compared to dynamic mechanical analysis (DMA: three-point bending) for the same samples. Nanoindentation (Berkovich, 5 μm and 21 μm radii spherical indenters) and DMA were performed on eight wet and dehydrated (100% ethanol), machined equine cortical bone beams. Samples were embedded in polymethylmethacrylate (PMMA) and mechanical tests repeated. Indentation direction was transverse to the bone long axis while DMA tested longitudinally, giving approximately 12% greater modulus in DMA. For wet samples, nanoindentation with spherical indenters revealed a low modulus surface layer. Estimates of the volume of material contributing to elastic modulus measurement showed that the surface layer influences the measured modulus at low loads. Consistent results were obtained for embedded tissue regardless of indenter geometry, provided appropriate methods and analysis were used. Modulus increased for nanoindentation (21 μm radius indenter) from 11.7 GPa ± 1.7 to 15.0 GPa ± 2.2 to 19.4 GPa ± 2.1, for wet, dehydrated in ethanol, and embedded conditions, respectively. The large increases in elastic modulus caused by replacing water with ethanol and ethanol with PMMA demonstrate that the role of water in fine pore space and its interaction with collagen strongly influence the mechanical behavior of the tissue.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Martin, R.B. and Boardman, D.L., J. Biomech. 26 1047 (1993).CrossRefGoogle Scholar
2.Martin, R.B. and Ishida, J., J. Biomech, 22 419 (1989).CrossRefGoogle Scholar
3.Ferguson, V.L., Bushby, A.J. and Boyde, A., J. Anat. 203 191 (2003).CrossRefGoogle Scholar
4.Lucksanasombool, P., Higgs, W.A.J., Higgs, R.J.E.D. and Swain, M.V., Biomaterials 22 3127 (2001).CrossRefGoogle Scholar
5.Broz, J.J., Simske, S.J., Greenberg, A.R., Luttges, M.W.. J. Biomech. Eng. 115 447 (1993).CrossRefGoogle Scholar
6.Currey, J.D., J. Biomech. 21 439 (1988).CrossRefGoogle Scholar
7.Menčík, J. and Swain, M.V., J. Mater. Res. 10 1491 (1995).CrossRefGoogle Scholar
8.Gustafson, M.B., Martin, R.B., Gibson, V., Storms, D.H., Stover, S.M., Gibeling, J. and Griffin, L., Calcium buffering is required to maintain bone stiffness in saline solution. J. Biomech. 29 1191 (1996).Google Scholar
9.Habelitz, S., Marshall, G.W. Jr., Balooch, M., and Marshall, S.J., J. Biomech. 35 995 (2002).CrossRefGoogle Scholar
10.Marshall, G.W. Jr., Wu-Magidi, I.C., Watanabe, L.G., Inai, N., Balooch, M., Kinney, J.H., and Marshall, S.J., J. Biomed. Mater. Res. 42 500 (1998).Google Scholar
11.Balooch, M., Wu-Magidi, I.C., Balazs, A., Lundkvist, A.S., Marshall, S.J., Marshall, G.W., Siekhaus, W.J., and Kinney, J.H., J. Biomed. Mater. Res. 40 539 (1998).3.0.CO;2-G>CrossRefGoogle Scholar
12.Evans, G.P., Behiri, J.C., Currey, J.D. and Bonfield, W., J. Mater. Sci. Mater. Med. 1 38 (1990).CrossRefGoogle Scholar
13.Simske, S.J., Broz, J.J. and Luttges, M.W., Effect of suspension on mouse bone microhardness. J. Mater. Sci. Mater. Med. 6 486 (1995).CrossRefGoogle Scholar
14.Rho, J-Y., Currey, J.D., Zioupos, P. and Pharr, G.M., J. Exp. Biol. 204 1775 (2001).Google Scholar
15.Rho, J-Y. and Pharr, G.M., J. Mater. Sci. Mater. Med. 10 485 (1999).CrossRefGoogle Scholar
16.Hengsberger, S., Kulik, A. and Zysset, P.H., Bone 30 178 (2002).CrossRefGoogle ScholarPubMed
17.Turner, C.H., Rho, J., Takano, Y., Tsui, T.Y. and Pharr, G.M., J. Biomech. 32 437 (1999).Google Scholar
18.Evans, F.G. and Lebow, M., J. Appl. Physiol. 3 563 (1951).Google Scholar
19.Howell, P.G. and Boyde, A., Scanning 21 361 (1999).CrossRefGoogle ScholarPubMed
20.Zysset, P.K., X.E. Guo, C.E. Hoffler, K.E. Moore, and S.A. Goldstein, J. Biomech. 32 1005 (1999).Google Scholar
21.Rho, J-Y., Zioupos, P., Currey, J.D. and Pharr, G.M., Bone 25 295 (1999).CrossRefGoogle Scholar
22.Kinney, J.H., Balooch, M., Marshall, S.J., Marshall, G.W. Jr., and Weihs, T.P., Hardness and Young’s modulus of peritubular and intertubular dentine Archs. Oral Biol. 41 9 (1996).CrossRefGoogle Scholar
23.Herrmann, K., Jennett, N.M., Wegener, W., Meneve, J., Hasche, K. and Seeman, R., Thin Solid Films 377–378 394 (2000).CrossRefGoogle Scholar
24.Oliver, W. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
25.Field, J.S. and Swain, M.V., J. Mater. Res. 8 297 (1993).CrossRefGoogle Scholar
26.Bushby, A.J., Non-Destruct. Test. Eval. 17 213 (2001).CrossRefGoogle Scholar
27.Bushby, A.J. and Jennett, N.M. in Fundamentals of Nanoindentation and Nanotrilology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), Q7.17.Google Scholar
28.Menard, K.P.Dynamic Mechanical Analysis: A Practical Introduction (CRC Press, Boca Raton, London, 1999), pp. 208.CrossRefGoogle Scholar
29.Oyen-Tiesma, M., Toivola, Y.A. and Cook, R.F. in Fundamentals of Nanoindentation and Nanotribology III, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), Q15.1.Google Scholar
30.Chudoba, T. and Richter, F., Surf. Coat. Technol. 148 191 (2001).Google Scholar
31.Briscoe, B.J., Fiori, L. and Pelillo, E., J. Phys. D: Appl. Phys. 31 2395 (1998).CrossRefGoogle Scholar
32.Mencik, J., Munz, D., Quandt, E., Weppelman, E.R. and Swain, M.V., J. Mater. Res. 12 2475 (1997).Google Scholar
33.Jennett, N.M. and Bushby, A.J., in Thin Films: Stresses and Mechanical Properties IX, edited by Ozkan, C.S., Freund, L.B., Cammarata, R.C., and Gao, H. (Mater. Res. Soc. Symp. Proc. 695, Warrendale, PA, 2002), p. 73.Google Scholar
34.Fischer-Cripps, A.C.Introduction to Contact Mechanics (Springer-Verlag, New York, 2000).Google Scholar
35.Melacini, G., Bonvin, A.M.J.J., Goodman, M., Boelens, R. and Kaptein, R., J. Mol. Biol. 300 1041 (2000).CrossRefGoogle Scholar
36.Saito, H. and Yokoi, M., J. Biochem. (Tokyo) 111 376 (1992).CrossRefGoogle Scholar