Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-08T03:10:30.498Z Has data issue: false hasContentIssue false

Nanometric powders and sintered ceramics studied by atomic force microscopy

Published online by Cambridge University Press:  31 January 2011

A. Dias
Affiliation:
Departamento de Engenharia Metal’urgica e de Materiais, EE-UFMG, Belo Horizonte, MG, 30160-030, Brazil
R. L. Moreira
Affiliation:
Departamentos de Física e Química, ICEx-UFMG, Belo Horizonte, MG, 30123-970, Brazil
N. D. S. Mohallem
Affiliation:
Departamentos de Física e Química, ICEx-UFMG, Belo Horizonte, MG, 30123-970, Brazil
J. M. C. Vilela
Affiliation:
Setor de Tecnologia Metalúrgica–Fundação Centro Tecnolóogico de Minas Gerais-CETEC, Belo Horizonte, MG, 31170-000, Brazil
M. S. Andrade
Affiliation:
Setor de Tecnologia Metalúrgica–Fundação Centro Tecnolóogico de Minas Gerais-CETEC, Belo Horizonte, MG, 31170-000, Brazil
Get access

Extract

Atomic force microscopy, as well as the Brunauer, Emmett, and Teller technique and x-ray diffraction, was used to analyze ultrafine NiZn ferrite powders hydrothermally synthesized at 200 °C, for 5 h. The particle sizes, measured through AFM images acquired from the surface of pressed powders, were 52 ± 6 nm, which were higher than those obtained by the other techniques. The particles were monodispersed in size and approximately spherical, meeting the requirements for the production of high density sintered components. The observations performed on ceramic bodies sintered at different conditions (1100–1400 °C, 5 to 240 min) showed necks characteristic of the early stages of sintering (1100 °C) and the expected pore curvature evolution (1400 °C) with sintering time in the final stage of the sintering process. Using a straightforward sample preparation technique, AFM proved to be a powerful tool for direct analysis of ceramic powder particles on the nanometric scale and sintered ceramics at different sintering stages.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Komarneni, S., Fregeau, E., Breval, E., and Roy, R., J. Am. Ceram. Soc. 71, C-26 (1988).CrossRefGoogle Scholar
2.Dias, A., Buono, V. T. L., Vilela, J. M., Andrade, M. S., and Lima, T. M., J. Mater. Sci. 32, 4715 (1997).CrossRefGoogle Scholar
3.Shakesheff, K. M., Davies, M. C., Jackson, D. E., Roberts, C. J., Tendler, S. U. B., Brown, V. A., Watson, R. C., Barrett, D. A., and Shaw, P. N., Surf. Sci. Lett. 304, L393 (1994).CrossRefGoogle Scholar
4.van der Zaag, P. J., Ruigrok, J. J. M., Noordermeer, A., van der Delden, M. H. W. M., Por, P. T., Rekveldt, M. Th., Donnet, D. M., and Chapman, J. N., J. Appl. Phys. 74, 4085 (1993).CrossRefGoogle Scholar
5.Dias, A., Moreira, R. L., and Mohallem, N. D. S., J. Phys. Chem. Solids 58, 543 (1997).CrossRefGoogle Scholar
6.Lowell, S. and Shields, J. E., Powder Surface Area and Porosity, edited by Scarlett, B. (Chapman and Hall Ltd., New York, 1987).Google Scholar
7.Suresh, K. and Patil, K. C., J. Solid State Chem. 99, 12 (1992).CrossRefGoogle Scholar
8.Coble, L., J. Appl. Phys. 32, 787 (1961).CrossRefGoogle Scholar