Skip to main content Accessibility help
×
×
Home

Nanoparticles for light management in ultrathin chalcopyrite solar cells

  • Martina Schmid (a1), Phillip Manley (a2), Andreas Ott (a3), Min Song (a1) and Guanchao Yin (a2)...
Abstract

We evaluate the potential of inserting metallic, metal-dielectric core-shell, and fully dielectric nanoparticles in ultrathin chalcopyrite solar cells to enhance absorption which experiences a significant drop for absorber thicknesses below 500 nm. For different integration positions at the front or at the rear of the solar cell structure theoretical expectations and potential benefits originating from light scattering, near-field enhancement and coupling into waveguide modes by the nanoparticles are presented. These benefits are always balanced against experimental challenges arising for particular geometries due to the very specific fabrication processes of chalcopyrite solar cells. In particular high absorber deposition temperatures as well as contact layers that are relatively thick compared to other devices need to be considered. Based on this, we will need to go beyond some geometries that have proven beneficial for other types of solar cells and identify the most promising configurations for chalcopyrite-based devices.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: martina.schmid@helmholtz-berlin.de
Footnotes
Hide All

Contributing Editor: Winston V. Schoenfeld

This paper has been selected as an Invited Feature Paper.

Footnotes
References
Hide All
1. Press Release 09/2016: ZSW Sets New World Record for Thin-film Solar Cells . https://www.zsw-bw.de/en/newsroom/news/news-detail/news/detail/News/zsw-sets-new-world-record-for-thin-film-solar-cells.html (2016).
2. Morioka, C., Shimazaki, K., Kawakita, S., Imaizumi, M., Yamaguchi, H., Takamoto, T., Sato, S-Î., Ohshima, T., Nakamura, Y., Hirako, K., and Takahashi, M.: First flight demonstration of film-laminated InGaP/GaAs and CIGS thin-film solar cells by JAXA's small satellite in LEO. Prog. Photovoltaics Res. Appl. 19(7), 825 (2011).
3. British Geological Survey: Risk List. http://www.bgs.ac.uk/mineralsuk/statistics/risklist.html (2015).
4. Palm, J., Karg, F., Schneider, H., Kushiya, K., Stolt, L., Tiwari, A.N., Niemi, E., Beck, M., Eberspacher, C., Wohlfart, P., Bayman, A., Schoop, U., Wieting, B., Ramanathan, K., Dimmler, B., Kuhn, C., Whitelegg, S., Rühle, U., Lincot, D., Naghavi, N., Walter, T., Schlatmann, R., Lux-Steiner, M., Kuypers, A., Szyszka, B., Siebentritt, S., Lechner, P., Powalla, M., Noufi, R., and Schock, H.W.: White paper for CIGS thin film solar cell technology. http://cigs-pv.net/ (2015).
5. Gu, M., Ouyang, Z., Jia, B., Stokes, N., Chen, X., Fahim, N., Li, X., Ventura, M.J., and Shi, Z.: Nanoplasmonics: A frontier of photovoltaic solar cells. Nanophotonics 1(3–4), 235 (2012).
6. Pillai, S., Catchpole, K.R., Trupke, T., and Green, M.A.: Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101(9), 093105/1 (2007).
7. Atwater, H.A. and Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010).
8. Ott, A., Ring, S., Yin, G., Calvet, W., Stannowski, B., Lu, Y., Schlatmann, R., and Ballauff, M.: Efficient plasmonic scattering of colloidal silver particles through annealing-induced changes. Nanotechnology 25, 455706 (2014).
9. van Lare, M., Lenzmann, F., and Polman, A.: Dielectric back scattering patterns for light trapping in thin-film Si solar cells. Opt. Express 21(18), 20738 (2013).
10. Grandidier, J., Weitekamp, R.A., Deceglie, M.G., Callahan, D.M., Battaglia, C., Bukowsky, C.R., Ballif, C., Grubbs, R.H., and Atwater, H.A.: Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere arrays. Phys. Status Solidi A 210(2), 255 (2013).
11. Schmid, M., Tsakanikas, S., Mangalgiri, G., Andrae, P., Song, M., Yin, G., Riedel, W., and Manley, P.: Nano-optical concept design for light management. In Proc. SPIE 9626, Optical Systems Design 2015: Optical Design and Engineering VI, Vol. 9626, 2015; p. 96260E.
14. Yin, G., Manley, P., and Schmid, M.: Influence of substrate and its temperature on the optical constants of CuIn1−x Ga x Se2 thin films. J. Phys. D: Appl. Phys. 47(13), 135101 (2014).
16. Palik, E.D.: Handbook of Optical Constants of Solids (Academic Press, Cambridge, 1985).
17. Yin, G., Brackmann, V., Hoffmann, V., and Schmid, M.: Enhanced performance of ultra-thin Cu(In,Ga)Se2 solar cells deposited at low process temperature. Sol. Energy Mater. Sol. Cells 132, 142 (2015).
18. Kosiorek, A., Kandulski, W., Chudzinski, P., Kempa, K., and Giersig, M.: Shadow nanosphere lithography: Simulation and experiment. Nano Lett. 4(7), 1359 (2004).
19. Moon, G.D., Lee, T.I., Kim, B., Chae, G., Kim, J., Kim, S., Myoung, J-M., and Jeong, U.: Assembled monolayers of hydrophilic particles on water surfaces. ACS Nano 5(11), 8600 (2011).
21. Wu, S., Schell, A.W., Lublow, M., Kaiser, J., Aichele, T., Schietinger, S., Polzer, F., Kühn, S., Guo, X., Benson, O., Ballauff, M., and Lu, Y.: Silica-coated Au/Ag nanorods with tunable surface plasmon bands for nanoplasmonics with single particles. Colloid Polym. Sci. 291(3), 585 (2013).
22. Gorelikov, I. and Matsuura, N.: Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett. 8(1), 369 (2008).
23. Stöber, W., Fink, A., and Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62 (1968).
24. West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., and Boltasseva, A.: Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795 (2010).
25. Manley, P., Burger, S., Schmidt, F., and Schmid, M.: Design principles for plasmonic nanoparticle devices. In Progress in Nonlinear Nano-optics, Sakabe, S., Lienau, C., and Grunwald, R. eds.; Springer International Publishing, Berlin, 2015; p. 223.
26. Bohren, C.F. and Huffmann, D.R.: Absorption and scattering of light by small particles (Wiley-VCH, New York, 1998).
27. Yin, G.: Preparation of Ultra-thin CuIn1−x Ga x Se2 Solar Cells and Their Light Absorption Enhancement (TU Berlin, Berlin, 2015).
28. Derkacs, D., Lim, S.H., Matheu, P., Mar, W., and Yu, E.T.: Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 89(9), 093103/1 (2006).
29. Nakayama, K., Tanabe, K., and Atwater, H.A.: Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 93(12), 121904/1 (2008).
30. Mertz, J.: Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: A unified description. J. Opt. Soc. Am. B 17(11), 1906 (2000).
31. Boyle, J.H., McCandless, B.E., Hanket, G.M., and Shafarman, W.N.: Structural characterization of the (AgCu)(InGa)Se2 thin film alloy system for solar cells. Thin Solid Films 519(21), 7292 (2011).
32. Yin, G., Steigert, A., Andrae, P., Goebelt, M., Latzel, M., Manley, P., Lauermann, I., Christiansen, S., and Schmid, M.: Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se2 solar cells. Appl. Surf. Sci. 355, 800 (2015).
33. Yang, Y., Pillai, S., Mehrvarz, H., Kampwerth, H., Ho-Baillie, A., and Green, M.A.: Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Sol. Energy Mater. Sol. Cells 101, 217 (2012).
34. Tan, H., Santbergen, R., Smets, A.H., and Zeman, M.: Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett. 12(8), 4070 (2012).
35. Ferry, V.E., Verschuuren, M.A., Li, H.B.T., Verhagen, E., Walters, R.J., Schropp, R.E.I., Atwater, H.A., and Polman, A.: Light trapping in ultrathin plasmonic solar cells. Opt. Express 18(S2), A237 (2010).
36. Manley, P., Schmidt, F., and Schmid, M.: Light extraction from plasmonic particles with dielectric shells and overcoatings. In Renewable Energy and the Environment: Optical Nanostructures and Advanced Materials for Photovoltaics (Optical Society of America, Tucson 2013); PW3B.7.
37. Chen, B., Zhang, W., Zhou, X., Huang, X., Zhao, X., Wang, H., Liu, M., Lu, Y., and Yang, S.: Surface plasmon enhancement of polymer solar cells by penetrating Au/SiO2 core/shell nanoparticles into all organic layers. Nano Energy 2(5), 906 (2013).
38. Xu, Q., Liu, F., Meng, W., and Huang, Y.: Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells. Opt. Express 20(S6), A898 (2012).
39. Saliba, M., Zhang, W., Burlakov, V.M., Stranks, S.D., Sun, Y., Ball, J.M., Johnston, M.B., Goriely, A., Wiesner, U., and Snaith, H.J.: Plasmonic-induced photon recycling in metal halide perovskite solar cells. Adv. Funct. Mater. 25(31), 5038 (2015).
40. Schmid, M., Andrae, P., and Manley, P.: Plasmonic and photonic scattering and near fields of nanoparticles. Nanoscale Res. Lett. 9, 50/1 (2014).
41. Akimov, Y.A., Koh, W.S., Sian, S.Y., and Ren, S.: Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles? Appl. Phys. Lett. 96(7), 073111 (2010).
42. van de Groep, J. and Polman, A.: Designing dielectric resonators on substrates: Combining magnetic and electric resonances. Opt. Express 21(22), 26285 (2013).
43. Schmid, M. and Manley, P.: Nano- and microlenses as concepts for enhanced performance of solar cells. J. Photonics Energy 5(1), 057003 (2014).
44. Oraevsky, A.N.: Whispering-gallery waves. Quantum Electron. 32(5), 377 (2002).
45. Yin, G., Manley, P., and Schmid, M.: Light absorption enhancement for ultra-thin Cu(In1−x Ga x )Se2 solar cells using closely packed 2-D SiO2 nanosphere arrays. Sol. Energy Mater. Sol. Cells 153, 124 (2016).
46. Lin, A., Zhong, Y-K., and Fu, S-M.: The versatile designs and optimizations for cylindrical TiO2-based scatterers for solar cell anti-reflection coatings. Opt. Express 21(S6), A1052 (2013).
47. Simovski, C.R., Shalin, A.S., Voroshilov, P.M., and Belov, P.A.: Photovoltaic absorption enhancement in thin-film solar cells by non-resonant beam collimation by submicron dielectric particles. J. Appl. Phys. 114(10), 103104 (2013).
48. Yin, G., Knight, M., van Lare, M-C., Polman, A., and Schmid, M.: Opto-electronic enhancement of ultrathin Cu(In,Ga)Se2 solar cells by nanophotonic contacts. Adv. Opt. Mat., accepted (2016).
49. van Lare, C., Yin, G., Polman, A., and Schmid, M.: Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns. ACS Nano 9(10), 9603 (2015).
50. Vermang, B., Wätjen, J.T., Fjällström, V., Rostvall, F., Edoff, M., Gunnarsson, R., Pilch, I., Helmersson, U., Kotipalli, R., Henry, F., and Flandre, D.: Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells. Thin Solid Films 582, 300 (2015).
51. Wang, E-C., Mokkapati, S., White, T.P., Soderstrom, T., Varlamov, S., and Catchpole, K.R.: Light trapping with titanium dioxide diffraction gratings fabricated by nanoimprinting. Prog. Photovoltaics Res. Appl. 22(5), 587 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed