Skip to main content Accessibility help

Nanoscale mapping of in situ actuating microelectromechanical systems with AFM

  • Manuel Rivas (a1), Varun Vyas (a1), Aliya Carter (a1), James Veronick (a2), Yusuf Khan (a2), Oleg V. Kolosov (a3), Ronald G. Polcawich (a4) and Bryan D. Huey (a5)...


Microelectromechanical systems (MEMS) are increasingly at our fingertips. To understand and thereby improve their performance, especially given their ever-decreasing sizes, it is crucial to measure their functionality in situ. Atomic force microscopy (AFM) is well suited for such studies, allowing nanoscale lateral and vertical resolution of static displacements, as well as mapping of the dynamic response of these physically actuating microsystems. In this work, the vibration of a tuning fork based viscosity sensor is mapped and compared to model experiments in air, liquid, and a curing collagen gel. The switching response of a MEMS switch with nanosecond time-scale activation is also monitored – including mapping resonances of the driving microcantilever and the displacement of an overhanging contact structure in response to periodic pulsing. Such nanoscale in situ AFM investigations of MEMS can be crucial for enhancing modeling, design, and the ultimate performance of these increasingly important and sophisticated devices.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Boussaad, S. and Tao, N.J.: Polymer wire chemical sensor using a microfabricated tuning fork. Nano Lett. 3(8), 11731176 (2003).
2.Zhang, J. and O'Shea, S.: Tuning forks as micromechanical mass sensitive sensors for bio- or liquid detection. Sens. Actuators, B 94(1), 6572 (2003).
3.Zeisel, D., Menzi, H., and Ullrich, L.: A precise and robust quartz sensor based on tuning fork technology for (SF6)-gas density control. Sens. Actuators, A 80(3), 233236 (2000).
4.Zhou, X.F., Jiang, T., Zhang, J., Wang, X.H., and Zhu, Z.Q.: Humidity sensor based on quartz tuning fork coated with sol-gel-derived nanocrystalline zinc oxide thin film. Sens. Actuators, B 123(1), 299305 (2007).
5.Todorovic, M. and Schultz, S.: Miniature high-sensitivity quartz tuning fork alternating gradient magnetometry. Appl. Phys. Lett. 73(24), 35953597 (1998).
6.Kosterev, A.A., Tittel, F.K., Serebryakov, D.V., Malinovsky, A.L., and Morozov, I.V.: Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 76(4), 043105 (2005).
7.Azevedo, R.G., Jones, D.G., Jog, A.V., Jamshidi, B., Myers, D.R., Chen, L., Fu, X.A., Mehregany, M., Wijesundara, M.B.J., and Pisano, A.P.: A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sens. J. 7(3–4), 568576 (2007).
8.Matsiev, L., Bennett, J., and Kolosov, O.: High precision tuning fork sensor for liquid property measurements. In 2005 IEEE Ultrasonics Symposium, New York, van der Steen, T. and Hossack, J. eds.; Vol. 3, 2005; pp. 14921495.
9.Buhrdorf, A., Dobrinski, H., Ludtke, O., Bennett, J., Matsiev, L., Uhrich, M., and Kolosov, O.: Multiparameteric Oil Condition Sensor Based on the Tuning Fork Technology for Automotive Applications (Springer-Verlag, Berlin, 2005).
10.Sassen, S., Voss, R., Schalk, J., Stenzel, E., Gleissner, T., Gruenberger, R., Neubauer, F., Ficker, W., Kupke, W., Bauer, K., and Rose, M.: Tuning fork silicon angular rate sensor with enhanced performance for automotive applications. Sens. Actuators, A 83(1–3), 8084 (2000).
11.Giessibl, F.J.: High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73(26), 39563958 (1998).
12.Dunn, R.C.: Near-field scanning optical microscopy. Chem. Rev. 99(10), 2891 (1999).
13.Gao, F.L., Li, X.D., Wang, J., and Fu, Y.: Dynamic behavior of tuning fork shear-force structures in a SNOM system. Ultramicroscopy 142, 1023 (2014).
14.Lee, Y., Ding, Z.F., and Bard, A.J.: Combined scanning electrochemical/optical microscopy with shear force and current feedback. Anal. Chem. 74(15), 36343643 (2002).
15.Custance, O., Perez, R., and Morita, S.: Atomic force microscopy as a tool for atom manipulation. Nat. Nanotechnol. 4(12), 803810 (2009).
16.Picco, L.M., Bozec, L., Ulcinas, A., Engledew, D.J., Antognozzi, M., Horton, M.A., and Miles, M.J.: Breaking the speed limit with atomic force microscopy. Nanotechnology 18(4), 044030 (2007).
17.Clubb, D.O., Buu, O.V.L., Bowley, R.M., Nyman, R., and Owers-Bradley, J.R.: Quartz tuning fork viscometers for helium liquids. J. Low Temp. Phys. 136(1–2), 113 (2004).
18.Bradley, D.I., Clovecko, M., Fisher, S.N., Garg, D., Guise, E., Haley, R.P., Kolosov, O., Pickett, G.R., Tsepelin, V., Schmoranzer, D., and Skrbek, L.: Crossover from hydrodynamic to acoustic drag on quartz tuning forks in normal and superfluid (4)He. Phys. Rev. B 85(1), 014501 (2012).
19.Ahlstrom, S.L., Bradley, D.I., Človečko, M., Fisher, S.N., Guénault, A.M., Guise, E.A., Haley, R.P., Kolosov, O., Kumar, M., McClintock, P.V.E., Pickett, G.R., Polturak, E., Poole, M., Todoshchenko, I., Tsepelin, V., and Woods, A.J.: Response of a mechanical oscillator in solid 4He. J. Low Temp. Phys. 175(1–2), 140146 (2014).
20.Soderkvist, J.: Micromachined gyroscopes. Sens. Actuators, A 43(1–3), 6571 (1994).
21.Zaman, M.F., Sharma, A., Hao, Z.L., and Ayazi, F.: A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour Allan deviation bias instability. J. Microelectromech. Syst. 17(6), 15261536 (2008).
22.Lemkin, M. and Boser, B.E.: A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics. IEEE J. Solid-State Circuits 34(4), 456468 (1999).
23.Dayton, D., Gonglewski, J., Restaino, S., Martin, J., Phillips, J., Hartman, M., Browne, S., Kervin, P., Snodgrass, J., Heimann, N., Shilko, M., Pohle, R., Carrion, B., Smith, C., and Thiel, D.: Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites. Opt. Express 10(25), 15081519 (2002).
24.Doble, N. and Williams, D.R.: The application of MEMS technology for adaptive optics in vision science. IEEE J. Sel. Top. Quantum Electron. 10(3), 629635 (2004).
25.Tuantranont, A. and Bright, V.M.: Segmented silicon-micromachined microelectromechanical deformable mirrors for adaptive optics. IEEE J. Sel. Top. Quantum Electron. 8(1), 3345 (2002).
26.Van Kessel, P.F., Hornbeck, L.J., Meier, R.E., and Douglass, M.R.: MEMS-based projection display. Proc. IEEE 86(8), 16871704 (1998).
27.Brown, E.R.: RF-MEMS switches for reconfigurable integrated circuits. IEEE Trans. Microwave Theory Tech. 46(11), 18681880 (1998).
28.Bannon, F.D., Clark, J.R., and Nguyen, C.T.C.: High-Q HF microelectromechanical filters. IEEE J. Solid-State Circuits 35(4), 512526 (2000).
29.Proie, R.M., Polcawich, R.G., Pulskamp, J.S., Ivanov, T., and Zaghloul, M.E.: Development of a PZT MEMS switch architecture for low-power digital applications. J. Microelectromech. Syst. 20(4), 10321042 (2011).
30.Nguyen, C.T.C.: MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(2), 251270 (2007).
31.Knappe, S., Shah, V., Schwindt, P.D.D., Hollberg, L., Kitching, J., Liew, L.A., and Moreland, J.: A microfabricated atomic clock. Appl. Phys. Lett. 85(9), 14601462 (2004).
32.Verpoorte, E. and De Rooij, N.F.: Microfluidics meets MEMS. Proc. IEEE 91(6), 930953 (2003).
33.Nguyen, N.T., Huang, X.Y., and Chuan, T.K.: MEMS-micropumps: A review. J. Fluids Eng. 124(2), 384392 (2002).
34.Lee, G.B., Chen, S.H., Huang, G.R., Sung, W.C., and Lin, Y.H.: Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sens. Actuators, B 75(1–2), 142148 (2001).
35.Grayson, A.C.R., Shawgo, R.S., Johnson, A.M., Flynn, N.T., Li, Y.W., Cima, M.J., and Langer, R.: A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE 92(1), 621 (2004).
36.Voldman, J., Gray, M.L., and Schmidt, M.A.: Microfabrication in biology and medicine. Annu. Rev. Biomed. Eng. 1, 401425 (1999).
37.Ziaie, B., Baldi, A., Lei, M., Gu, Y.D., and Siegel, R.A.: Hard and soft micromachining for BioMEMS: Review of techniques and examples of applications in microfluidics and drug delivery. Adv. Drug Delivery Rev. 56(2), 145172 (2004).
38.Kotzar, G., Freas, M., Abel, P., Fleischman, A., Roy, S., Zorman, C., Moran, J.M., and Melzak, J.: Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials 23(13), 27372750 (2002).
39.Pulskamp, J.S., Polcawich, R.G., Rudy, R.Q., Bedair, S.S., Proie, R.M., Ivanov, T., and Smith, G.L.: Piezoelectric PZT MEMS technologies for small-scale robotics and RF applications. MRS Bull. 37(11), 10621070 (2012).
40.Osterberg, P.M. and Senturia, S.D.: M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromech. Syst. 6(2), 107118 (1997).
41.Beeby, S.P., Tudor, M.J., and White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175R195 (2006).
42.Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E.M., Holmes, A.S., and Green, T.C.: MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators, A 115(2–3), 523529 (2004).
43.Spearing, S.M.: Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48(1), 179196 (2000).
44.Muralt, P., Polcawich, R.G., and Trolier-McKinstry, S.: Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull. 34(9), 658664 (2009).
45.Pulskamp, J.S., Bedair, S.S., Polcawich, R.G., Smith, G.L., Martin, J., Power, B., and Bhave, S.A.: Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(5), 10431060 (2012).
46.Maboudian, R., Ashurst, W.R., and Carraro, C.: Self-assembled monolayers as anti-stiction coatings for MEMS: Characteristics and recent developments. Sens. Actuators, A 82(1–3), 219223 (2000).
47.Delrio, F.W., De Boer, M.P., Knapp, J.A., Reedy, E.D., Clews, P.J., and Dunn, M.L.: The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4(8), 629634 (2005).
48.Kimberley, J., Lambros, J., Chasiotis, I., Pulskamp, J., Polcawich, R., and Dubey, M.: A hybrid experimental/numerical investigation of the response of multilayered MEMS devices to dynamic loading. Exp. Mech. 50(4), 527544 (2010).
49.Rembe, C., Kant, R., and Muller, R.S.: Optical measurement methods to study dynamic behavior in MEMS. In Proc. SPIE 4400, Microsystems Engineering: Metrology and Inspection, SPIE-Int Soc Optical Engineering, Bellingham, 2001; pp. 127137.
50.Espinosa, H.D., Prorok, B.C., and Fischer, M.: A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J. Mech. Phys. Solids 51(1), 4767 (2003).
51.Sharpe, W.N., Pulskamp, J., Gianola, D.S., Eberl, C., Polcawich, R.G., and Thompson, R.J.: Strain measurements of silicon dioxide microspecimens by digital imaging processing. Exp. Mech. 47(5), 649658 (2007).
52.Gouldstone, A., Chollacoop, N., Dao, M., Li, J., Minor, A.M., and Shen, Y.L.: Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 55(12), 40154039 (2007).
53.Lee, S.W., Meza, L., and Greer, J.R.: Cryogenic nanoindentation size effect in 001 -oriented face-centered cubic and body-centered cubic single crystals. Appl. Phys. Lett. 103(10), 101906 (2013).
54.Nili, H., Kalantar-zadeh, K., Bhaskaran, M., and Sriram, S.: In situ nanoindentation: Probing nanoscale multifunctionality. Prog. Mater. Sci. 58(1), 129 (2013).
55.Xu, Z-H., Sutton, M.A., and Li, X.: Mapping nanoscale wear field by combined atomic force microscopy and digital image correlation techniques. Acta Mater. 56(20), 63046309 (2008).
56.Liu, H.W. and Bhushan, B.: Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM. Ultramicroscopy 97(1–4), 321340 (2003).
57.Bhushan, B., Kwak, K.J., and Palacio, M.: Nanotribology and nanomechanics of AFM probe-based data recording technology. J. Phys.: Condens. Matter 20(36), 365207 (2008).
58.Abir, R., Roizman, P., Fisch, B., Nitke, S., Okon, E., Orvieto, R., and Ben Rafael, Z.: Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Hum. Reprod. 14(5), 12991301 (1999).
59.Proie, R.M., Ivanov, T., Pulskamp, J.S., and Polcawich, R.G.: A compact, low loss piezoelectric RF MEMS relay with sub 100-ns switching times. In 2012 IEEE MTT-S International Microwave Symposium Digest (MTT), Montreal, Canada, 2012.
60.Sanchez, L., Potrepka, D., Fox, G., Takeuchi, I., and Polcawich, R.G.: Optimization of PbTiO3 seed layers and Pt metallization for PZT based PiezoMEMS actuators. J. Mater. Res. 28, 19201931 (2013).
61.Bosse, J.L. and Huey, B.D.: Error-corrected AFM: A simple and broadly applicable approach for substantially improving AFM image accuracy. Nanotechnology 25(15), 155704 (2014).
62.Xu, J., You, B., and Zhao, X.F.: Development of quartz tuning fork temperature sensors. Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, 2008. SPAWDA 2008, New York, 2008.
63.Humphris, A.D.L., Miles, M.J., and Hobbs, J.K.: A mechanical microscope: High-speed atomic force microscopy. Appl. Phys. Lett. 86(3), 034106 (2005).
64.Bosse, J.L., Grishin, I., Kolosov, O.V., and Huey, B.D.: Multidimensional SPM applied for nanoscale conductance mapping. J. Mater. Res. 28(24), 33113321 (2013).
65.Kutes, Y.: Nanoscale photovoltaic mapping. Ph.D. Thesis, University of Connecticut, 2014.
66.Huey, B.D.: AFM and acoustics: Fast, quantitative nanomechanical mapping. Annu. Rev. Mater. Res. 37, 351385 (2007).
67.Bosse, J., Lee, S., Huey, B., Andersen, A., and Sutherland, D.: High speed friction microscopy and nanoscale friction coefficient mapping. Meas. Sci. Technol. 25(11), 115401 (2014).
68.Pulskamp, J.S., Proie, R.M., and Polcawich, R.G.: Nano- and micro-electromechanical switch dynamics. J. Micromech. Microeng. 24, 11 (2014).
Type Description Title
Supplementary materials

Rivas supplementary material
Supplementary figures

 Word (1.1 MB)
1.1 MB

Nanoscale mapping of in situ actuating microelectromechanical systems with AFM

  • Manuel Rivas (a1), Varun Vyas (a1), Aliya Carter (a1), James Veronick (a2), Yusuf Khan (a2), Oleg V. Kolosov (a3), Ronald G. Polcawich (a4) and Bryan D. Huey (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed