Skip to main content Accessibility help
×
Home

Nanostructured high-entropy materials

  • Michel J.R. Haché (a1), Changjun Cheng (a1) and Yu Zou (a1)

Abstract

In the past decade, the emergence of high-entropy alloys (HEAs) and other high-entropy materials (HEMs) has brought about new opportunities in the development of novel materials for high-performance applications. In combining solid-solution (SS) strengthening with grain-boundary strengthening, new material systems—nanostructured or nanocrystalline (NC) HEAs or HEMs—have been developed, showing superior combined mechanical and functional properties compared with conventional alloys, HEAs, and NC metals. This article reviews the processing methods, materials, mechanical properties, thermal stability, and functional properties of various nanostructured HEMs, particularly NC HEAs. With such new nanostructures and alloy compositions, many interesting phenomena and properties of such NC HEAs have been unveiled, for example, extraordinary microstructural and mechanical thermal stability. As more HEAs or HEMs are being developed, a new avenue of research is to be exploited. The article concludes with perspectives about future directions in this field.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Nanostructured high-entropy materials
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Nanostructured high-entropy materials
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Nanostructured high-entropy materials
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

a)Address all correspondence to this author. e-mail: mse.zou@utoronto.ca

Footnotes

Hide All

This paper has been selected as an Invited Feature Paper.

Footnotes

References

Hide All
1.Yeh, J-W., Chen, S-K., Lin, S-J., Gan, J-Y., Chin, T-S., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).10.1002/adem.200300567
2.Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).10.1016/j.actamat.2016.08.081
3.Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).10.1080/21663831.2014.912690
4.Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).10.1016/0079-6425(89)90001-7
5.Koch, C.C., ed.: Nanostructured Materials: Processing, Properties, and Applications, 2nd ed. (William Andrew Publisher, Norwich, NY, 2007).
6.Weissmüller, J.: Alloy effects in nanostructures. Nanostruct. Mater. 3, 261 (1993).10.1016/0965-9773(93)90088-S
7.Weissmüller, J.: Alloy thermodynamics in nanostructures. J. Mater. Res. 9, 4 (1994).10.1557/JMR.1994.0004
8.Yeh, J-W.: Recent progress in high-entropy alloys. Ann. Chimie Sci. Matériaux 31, 633 (2006).10.3166/acsm.31.633-648
9.Fleischer, R.L.: Substitutional solution hardening. Acta Metall. 11, 203 (1963).10.1016/0001-6160(63)90213-X
10.Labusch, R.: A statistical theory of solid solution hardening. Phys. Status Solidi B 41, 659 (1970).10.1002/pssb.19700410221
11.Gypen, L.A. and Deruyttere, A.: Multi-component solid solution hardening. J. Mater. Sci. 12, 1028 (1977).10.1007/BF00540987
12.Toda-Caraballo, I. and Rivera-Díaz-del-Castillo, P.E.J.: Modelling solid solution hardening in high entropy alloys. Acta Mater. 85, 14 (2015).10.1016/j.actamat.2014.11.014
13.Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect. B 64, 747 (1951).10.1088/0370-1301/64/9/303
14.Petch, N.J.: The cleavage strength of polycrystals. Iron Steel Inst., 174, 25 (1953).
15.Luo, J. and Wang, Z.R.: On the physical meaning of the Hall–Petch constant. Adv. Mater. Res. 15–17, 643 (2006).10.4028/www.scientific.net/AMR.15-17.643
16.Carlton, C.E. and Ferreira, P.J.: What is behind the inverse Hall–Petch effect in nanocrystalline materials? Acta Mater. 55, 3749 (2007).10.1016/j.actamat.2007.02.021
17.Gottstein, G. and Shvindlerman, L.S.: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd ed. (CRC Press—Taylor & Francis Group, Boca Raton, FL, 2010).
18.Porter, D.A., Easterling, K.E., and Sherif, M.Y.: Phase Transformations in Metals and Alloys, 3rd ed. (CRC Press—Taylor & Francis Group, Boca Raton, FL, 2009).
19.Zou, Y., Ma, H., and Spolenak, R.: Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 6 (2015).10.1038/ncomms8748
20.Liu, W.H., Wu, Y., He, J.Y., Nieh, T.G., and Lu, Z.P.: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68, 526 (2013).10.1016/j.scriptamat.2012.12.002
21.Sriharitha, R., Murty, B.S., and Kottada, R.S.: Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. J. Alloys Compd. 583, 419 (2014).10.1016/j.jallcom.2013.08.176
22.Sathiyamoorthi, P., Basu, J., Kashyap, S., Pradeep, K.G., and Kottada, R.S.: Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite. Mater. Des. 134, 426 (2017).10.1016/j.matdes.2017.08.053
23.Valiev, R.Z.: Producing bulk nanostructured metals and alloys by severe plastic deformation (SPD), Nanostructured Metals and Alloys—Processing, Microstructure, Mechanical Properties, and Applications, Wang, S.H., ed. (Woodhead Publishing Ltd., Cambridge, U.K., 2011); pp. 139.
24.Long, Y., Su, K., Zhang, J., Liang, X., Peng, H., and Li, X.: Enhanced strength of a mechanical alloyed NbMoTaWVTi refractory high entropy alloy. Materials 11, 669 (2018).10.3390/ma11050669
25.Lu, T., Scudino, S., Chen, W., Wang, P., Li, D., Mao, M., Kang, L., Liu, Y., and Fu, Z.: The influence of nanocrystalline CoNiFeAl0.4Ti0.6Cr0.5 high-entropy alloy particles addition on microstructure and mechanical properties of SiCp/7075Al composites. Mater. Sci. Eng., A 726, 126 (2018).10.1016/j.msea.2018.04.080
26.Kumar, N., Tiwary, C.S., and Biswas, K.: Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. J. Mater. Sci. 53, 13411 (2018).
27.Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., and Koch, C.C.: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95 (2015).
28.Pohan, R.M., Gwalani, B., Lee, J., Alam, T., Hwang, J.Y., Ryu, H.J., Banerjee, R., and Hong, S.H.: Microstructures and mechanical properties of mechanically alloyed and spark plasma sintered Al0.3CoCrFeMnNi high entropy alloy. Mater. Chem. Phys. 210, 62 (2018).
29.Wang, P., Cai, H., and Cheng, X.: Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCuFeCr2−x (x = 1.0, 1.2, 1.5, 1.8 mol) high entropy alloys. J. Alloys Compd. 662, 20 (2016).
30.Praveen, S., Murty, B.S., and Kottada, R.S.: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng., A 534, 83 (2012).10.1016/j.msea.2011.11.044
31.Shahmir, H., He, J., Lu, Z., Kawasaki, M., and Langdon, T.G.: Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng., A 676, 294 (2016).
32.Lee, D-H., Choi, I-C., Seok, M-Y., He, J., Lu, Z., Suh, J-Y., Kawasaki, M., Langdon, T.G., and Jang, J.: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30, 2804 (2015).
33.Feng, X.B., Zhang, J.Y., Wang, Y.Q., Hou, Z.Q., Wu, K., Liu, G., and Sun, J.: Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films. Int. J. Plast. 95, 264 (2017).
34.Nagase, T., Rack, P.D., Noh, J.H., and Egami, T.: In situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics 59, 32 (2015).10.1016/j.intermet.2014.12.007
35.Chen, T.K., Shun, T.T., Yeh, J.W., and Wong, M.S.: Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 188–189, 193 (2004).
36.Liao, W., Lan, S., Gao, L., Zhang, H., Xu, S., Song, J., Wang, X., and Lu, Y.: Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering. Thin Solid Films 638, 383 (2017).10.1016/j.tsf.2017.08.006
37.Chen, Y-L., Hu, Y-H., Tsai, C-W., Hsieh, C-A., Kao, S-W., Yeh, J-W., Chin, T-S., and Chen, S-K.: Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying. J. Alloys Compd. 477, 696 (2009).10.1016/j.jallcom.2008.10.111
38.Lin, Q., An, X., Liu, H., Tang, Q., Dai, P., and Liao, X.: In-situ high-resolution transmission electron microscopy investigation of grain boundary dislocation activities in a nanocrystalline CrMnFeCoNi high-entropy alloy. J. Alloys Compd. 709, 802 (2017).10.1016/j.jallcom.2017.03.194
39.Kim, H., Nam, S., Roh, A., Son, M., Ham, M-H., Kim, J-H., and Choi, H.: Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films. Int. J. Refract. Met. Hard Mater. 80, 286 (2019).10.1016/j.ijrmhm.2019.02.005
40.Firstov, S.A., Gorban', V.F., Danilenko, N.I., Karpets, M.V., Andreev, A.A., and Makarenko, E.S.: Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti–V–Zr–Nb–Hf alloy. Powder Metall. Met. Ceram. 52, 560 (2014).
41.Sobol', O.V., Andreev, A.A., Gorban', V.F., Krapivka, N.A., Stolbovoi, V.A., Serdyuk, I.V., and Fil'chikov, V.E.: Reproducibility of the single-phase structural state of the multielement high-entropy Ti–V–Zr–Nb–Hf system and related superhard nitrides formed by the vacuum-arc method. Tech. Phys. Lett. 38, 616 (2012).10.1134/S1063785012070127
42.Schuh, B., Völker, B., Todt, J., Schell, N., Perrière, L., Li, J., Couzinié, J.P., and Hohenwarter, A.: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties. Acta Mater. 142, 201 (2018).
43.Schuh, B., Völker, B., Maier-Kiener, V., Todt, J., Li, J., and Hohenwarter, A.: Phase decomposition of a single-phase AlTiVNb high-entropy alloy after severe plastic deformation and annealing: Phase decomposition of a single-phase AlTiVNb high-entropy alloy. Adv. Eng. Mater. 19, 1600674 (2017).10.1002/adem.201600674
44.Rogal, Ł., Kalita, D., Tarasek, A., Bobrowski, P., and Czerwinski, F.: Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy. J. Alloys Compd. 708, 344 (2017).
45.Shahmir, H., Tabachnikova, E., Podolskiy, A., Tikhonovsky, M., and Langdon, T.G.: Effect of carbon content and annealing on structure and hardness of CrFe2NiMnV0.25 high-entropy alloys processed by high-pressure torsion. J. Mater. Sci. 53, 11813 (2018).
46.Shahmir, H., Nili-Ahmadabadi, M., Shafiee, A., Andrzejczuk, M., Lewandowska, M., and Langdon, T.G.: Effect of Ti on phase stability and strengthening mechanisms of a nanocrystalline CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng., A 725, 196 (2018).
47.Xie, Y., Cheng, H., Tang, Q., Chen, W., Chen, W., and Dai, P.: Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics 93, 228 (2018).
48.Wang, P., Cheng, X., Cai, H., Xue, Y., and Zhang, Y.: Influence of increasing Al concentration on phase, microstructure and mechanical behaviors of Ni1.5CoFeCu1−xAlxV0.5 high entropy alloys. Mater. Sci. Eng., A 708, 523 (2017).
49.Rogal, Ł., Kalita, D., and Litynska-Dobrzynska, L.: CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3. Intermetallics 86, 104 (2017).
50.Shahmir, H., Nili-Ahmadabadi, M., Shafie, A., and Langdon, T.: Hardening and thermal stability of a nanocrystalline CoCrFeNiMnTi0.1 high-entropy alloy processed by high-pressure torsion. IOP Conf. Ser.: Mater. Sci. Eng. 194, 012017 (2017).10.1088/1757-899X/194/1/012017
51.Shang, C., Axinte, E., Sun, J., Li, X., Li, P., Du, J., Qiao, P., and Wang, Y.: CoCrFeNi(W1−xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering. Mater. Des. 117, 193 (2017).
52.Maulik, O., Kumar, D., Kumar, S., Fabijanic, D.M., and Kumar, V.: Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics 77, 46 (2016).
53.Gómez-Esparza, C.D., Baldenebro-López, F., González-Rodelas, L., Baldenebro-López, J., and Martínez-Sánchez, R.: Series of nanocrystalline NiCoAlFe(Cr, Cu, Mo, Ti) high-entropy alloys produced by mechanical alloying. Mater. Res. 19, 39 (2016).
54.Fu, Z., Chen, W., Wen, H., Zhang, D., Chen, Z., Zheng, B., Zhou, Y., and Lavernia, E.J.: Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59 (2016).
55.Yu, P.F., Zhang, L.J., Cheng, H., Zhang, H., Ma, M.Z., Li, Y.C., Li, G., Liaw, P.K., and Liu, R.P.: The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics 70, 82 (2016).
56.Yu, P.F., Cheng, H., Zhang, L.J., Zhang, H., Jing, Q., Ma, M.Z., Liaw, P.K., Li, G., and Liu, R.P.: Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 655, 283 (2016).10.1016/j.msea.2015.12.085
57.Khanchandani, H., Sharma, P., Kumar, R., Maulik, O., and Kumar, V.: Effect of sintering on phase evolution in AlMgFeCuCrNi4.75 high entropy alloy. Adv. Powder Technol. 27, 289 (2016).
58.Schuh, B., Mendez-Martin, F., Völker, B., George, E.P., Clemens, H., Pippan, R., and Hohenwarter, A.: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).10.1016/j.actamat.2015.06.025
59.Tang, Q.H., Huang, Y., Huang, Y.Y., Liao, X.Z., Langdon, T.G., and Dai, P.Q.: Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Mater. Lett. 151, 126 (2015).
60.Ji, W., Wang, W., Wang, H., Zhang, J., Wang, Y., Zhang, F., and Fu, Z.: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24 (2015).
61.Mohanty, S., Gurao, N.P., and Biswas, K.: Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying. Mater. Sci. Eng., A 617, 211 (2014).
62.Wang, C., Ji, W., and Fu, Z.: Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv. Powder Technol. 25, 1334 (2014).
63.Ji, W., Fu, Z., Wang, W., Wang, H., Zhang, J., Wang, Y., and Zhang, F.: Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J. Alloys Compd. 589, 61 (2014).
64.Praveen, S., Murty, B.S., and Kottada, R.S.: Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. JOM 65, 1797 (2013).
65.Pradeep, K.G., Wanderka, N., Choi, P., Banhart, J., Murty, B.S., and Raabe, D.: Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater. 61, 4696 (2013).10.1016/j.actamat.2013.04.059
66.Washko, S.D and Aggen, G.: “Wrought Stainless Steels” ASM Handbook—Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys (ASM International, 1993).
67.Stoloff, N.S: “Wrought and P/M SuperalloysASM Handbook—Volume 1: Properties and Selection: Irons, AU3 Steels, and High-Performance Alloys (ASM International, 1993).
68.Zaddach, A.J., Niu, C., Koch, C.C., and Irving, D.L.: Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65, 1780 (2013).
69.Okamoto, N.L., Fujimoto, S., Kambara, Y., Kawamura, M., Chen, Z.M.T., Matsunoshita, H., Tanaka, K., Inui, H., and George, E.P.: Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 6, 35863 (2016).10.1038/srep35863
70.Yoshida, S., Ikeuchi, T., Bhattacharjee, T., Bai, Y., Shibata, A., and Tsuji, N.: Effect of elemental combination on friction stress and Hall–Petch relationship in face-centered cubic high/medium entropy alloys. Acta Mater. 171, 201 (2019).
71.Keller, C. and Hug, E.: Hall–Petch behaviour of Ni polycrystals with a few grains per thickness. Mater. Lett. 62, 1718 (2008).
72.Yoshida, S., Bhattacharjee, T., Bai, Y., and Tsuji, N.: Friction stress and Hall–Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing. Scr. Mater. 134, 33 (2017).
73.Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).
74.Hansen, N. and Ralph, B.: The strain and grain size dependence of the flow stress of copper. Acta Metall. 30, 411 (1982).
75.Yang, L.J.: Wear coefficient equation for aluminium-based matrix composites against steel disc. Wear 255, 579 (2003).
76.Kao, Y-F., Chen, T-J., Chen, S-K., and Yeh, J-W.: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 57 (2009).10.1016/j.jallcom.2009.08.090
77.Wang, W-R., Wang, W-L., and Yeh, J-W.: Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 589, 143 (2014).10.1016/j.jallcom.2013.11.084
78.Wu, J-M., Lin, S-J., Yeh, J-W., Chen, S-K., Huang, Y-S., and Chen, H-C.: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261, 513 (2006).10.1016/j.wear.2005.12.008
79.Chen, M-R., Lin, S-J., Yeh, J-W., Chen, S-K., Huang, Y-S., and Tu, C-P.: Microstructure and properties of Al0.5CoCrCuFeNiTix (x = 0–2.0) high-entropy alloys. Mater. Trans. 47, 1395 (2006).
80.Shang, C., Axinte, E., Ge, W., Zhang, Z., and Wang, Y.: High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering. Surf. Interfaces 9, 36 (2017).10.1016/j.surfin.2017.06.012
81.Zhou, N., Hu, T., Huang, J., and Luo, J.: Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions. Scr. Mater. 124, 160 (2016).
82.Zhang, H., He, Y-Z., Pan, Y., and Guo, S.: Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy. J. Alloys Compd. 600, 210 (2014).
83.Mohanty, S., Maity, T.N., Mukhopadhyay, S., Sarkar, S., Gurao, N.P., Bhowmick, S., and Biswas, K.: Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299 (2017).
84.Kumar, D., Maulik, O., Kumar, S., Prasad, Y.V.S.S., and Kumar, V.: Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Mater. Chem. Phys. 210, 71 (2018).
85.Sharma, A.S., Yadav, S., Biswas, K., and Basu, B.: High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement. Mater. Sci. Eng., R 131, 1 (2018).10.1016/j.mser.2018.04.003
86.Chou, H-P., Chang, Y-S., Chen, S-K., and Yeh, J-W.: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Mater. Sci. Eng. B 163, 184 (2009).10.1016/j.mseb.2009.05.024
87.Shafeie, S., Guo, S., Hu, Q., Fahlquist, H., Erhart, P., and Palmqvist, A.: High-entropy alloys as high-temperature thermoelectric materials. J. Appl. Phys. 118, 184905 (2015).10.1063/1.4935489
88.Wang, R., Zhang, K., Davies, C., and Wu, X.: Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication. J. Alloys Compd. 694, 971 (2017).10.1016/j.jallcom.2016.10.138
89.Dong, W., Zhou, Z., Zhang, L., Zhang, M., Liaw, P., Li, G., and Liu, R.: Effects of Y, GdCu, and Al addition on the thermoelectric behavior of CoCrFeNi high entropy alloys. Metals 8, 781 (2018).10.3390/met8100781
90.Shi, Y., Collins, L., Feng, R., Zhang, C., Balke, N., Liaw, P.K., and Yang, B.: Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corros. Sci. 133, 120 (2018).
91.Kao, Y-F., Chen, S-K., Chen, T-J., Chu, P-C., Yeh, J-W., and Lin, S-J.: Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 509, 1607 (2011).10.1016/j.jallcom.2010.10.210
92.Ralston, K.D. and Birbilis, N.: Effect of grain size on corrosion: A review. CORROSION 66, 075005 (2010).
93.Rofagha, R., Langer, R., El-Sherik, A.M., Erb, U., Palumbo, G., and Aust, K.T.: The corrosion behaviour of nanocrystalline nickel. Scr. Metall. Mater. 25, 2867 (1991).
94.Monaco, L., Avramovic-Cingara, G., Palumbo, G., and Erb, U.: Corrosion behaviour of electrodeposited nanocrystalline nickel-iron (NiFe) alloys in dilute H2SO4. Corros. Sci. 130, 103 (2018).10.1016/j.corsci.2017.10.018
95.Qiu, Y., Thomas, S., Gibson, M.A., Fraser, H.L., and Birbilis, N.: Corrosion of high entropy alloys. npj Mater. Degrad. 1, 15 (2017).
96.Shi, Y., Yang, B., and Liaw, P.: Corrosion-resistant high-entropy alloys: A review. Metals 7, 43 (2017).
97.Li, J., Yang, X., Zhu, R., and Zhang, Y.: Corrosion and serration behaviors of TiZr0.5NbCr0.5VxMoy high entropy alloys in aqueous environments. Metals 4, 597 (2014).
98.Hsu, C-Y., Yeh, J-W., Chen, S-K., and Shun, T-T.: Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35, 1465 (2004).
99.Chen, Y.Y., Duval, T., Hung, U.D., Yeh, J.W., and Shih, H.C.: Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel. Corros. Sci. 47, 2257 (2005).10.1016/j.corsci.2004.11.008
100.Nong, Z., Zhu, J., Yang, X., Yu, H., and Lai, Z.: Effects of annealing on microstructure, mechanical and electrical properties of AlCrCuFeMnTi high entropy alloy. J. Wuhan Univ. Technol., Mater. Sci. Ed. 28, 1196 (2013).
101.von Rohr, F., Winiarski, M.J., Tao, J., Klimczuk, T., and Cava, R.J.: Effect of electron count and chemical complexity in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor. Proc. Natl. Acad. Sci. 113, E7144 (2016).10.1073/pnas.1615926113
102.von Rohr, F.O. and Cava, R.J.: Isoelectronic substitutions and aluminium alloying in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor. Phys. Rev. Mater. 2, 034801 (2018).
103.Karati, A., Nagini, M., Ghosh, S., Shabadi, R., Pradeep, K.G., Mallik, R.C., Murty, B.S., and Varadaraju, U.V.: Ti2NiCoSnSb—A new half-Heusler type high-entropy alloy showing simultaneous increase in Seebeck coefficient and electrical conductivity for thermoelectric applications. Sci. Rep. 9, 5331 (2019).
104.Liu, R., Chen, H., Zhao, K., Qin, Y., Jiang, B., Zhang, T., Sha, G., Shi, X., Uher, C., Zhang, W., and Chen, L.: Entropy as a gene-like performance indicator promoting thermoelectric materials. Adv. Mater. 29, 1702712 (2017).
105.Yan, J., Liu, F., Ma, G., Gong, B., Zhu, J., Wang, X., Ao, W., Zhang, C., Li, Y., and Li, J.: Suppression of the lattice thermal conductivity in NbFeSb-based half-Heusler thermoelectric materials through high entropy effects. Scr. Mater. 157, 129 (2018).10.1016/j.scriptamat.2018.08.008
106.Tan, G., Shi, F., Hao, S., Chi, H., Bailey, T.P., Zhao, L-D., Uher, C., Wolverton, C., Dravid, V.P., and Kanatzidis, M.G.: Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. J. Am. Chem. Soc. 137, 11507 (2015).
107.Hu, L., Zhang, Y., Wu, H., Li, J., Li, Y., McKenna, M., He, J., Liu, F., Pennycook, S.J., and Zeng, X.: Entropy engineering of SnTe: Multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Adv. Energy Mater. 8, 1802116 (2018).
108.Yao, C-Z., Zhang, P., Liu, M., Li, G-R., Ye, J-Q., Liu, P., and Tong, Y-X.: Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy. Electrochim. Acta 53, 8359 (2008).
109.Luo, Q., Zhao, D.Q., Pan, M.X., and Wang, W.H.: Magnetocaloric effect in Gd-based bulk metallic glasses. Appl. Phys. Lett. 89, 081914 (2006).10.1063/1.2338770
110.Yuan, Y., Wu, Y., Tong, X., Zhang, H., Wang, H., Liu, X.J., Ma, L., Suo, H.L., and Lu, Z.P.: Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Mater. 125, 481 (2017).
111.Sahlberg, M., Karlsson, D., Zlotea, C., and Jansson, U.: Superior hydrogen storage in high entropy alloys. Sci. Rep. 6, 36770 (2016).
112.Hu, J., Shen, H., Jiang, M., Gong, H., Xiao, H., Liu, Z., Sun, G., and Zu, X.: A DFT study of hydrogen storage in high-entropy alloy TiZrHfScMo. Nanomaterials 9, 461 (2019).
113.Gesari, S.B., Pronsato, M.E., Visintin, A., and Juan, A.: Hydrogen storage in AB2 laves phase (A = Zr, Ti; B = Ni, Mn, Cr, V): Binding energy and electronic structure. J. Phys. Chem. C 114, 16832 (2010).
114.Luo, H., Li, Z., and Raabe, D.: Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7, 9892 (2017).10.1038/s41598-017-10774-4
115.Zhao, Y., Lee, D-H., Seok, M-Y., Lee, J-A., Phaniraj, M.P., Suh, J-Y., Ha, H-Y., Kim, J-Y., Ramamurty, U., and Jang, J-I.: Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scr. Mater. 135, 54 (2017).
116.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).
117.Wu, Z., Parish, C.M., and Bei, H.: Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys. J. Alloys Compd. 647, 815 (2015).
118.Idrissi, H., Ryelandt, L., Veron, M., Schryvers, D., and Jacques, P.J.: Is there a relationship between the stacking fault character and the activated mode of plasticity of Fe–Mn-based austenitic steels? Scr. Mater. 60, 941 (2009).
119.Zhang, Y.H., Zhuang, Y., Hu, A., Kai, J.J., and Liu, C.T.: The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scr. Mater. 130, 96 (2017).
120.Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).
121.Wang, M.M., Tasan, C.C., Ponge, D., Dippel, A.C., and Raabe, D.: Nanolaminate transformation-induced plasticity–twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater. 85, 216 (2015).
122.He, F., Wang, Z., Wu, Q., Li, J., Wang, J., and Liu, C.T.: Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scr. Mater. 126, 15 (2017).
123.Egami, T., Guo, W., Rack, P.D., and Nagase, T.: Irradiation resistance of multicomponent alloys. Metall. Mater. Trans. A 45, 180 (2014).
124.Nagase, T., Anada, S., Rack, P.D., Noh, J.H., Yasuda, H., Mori, H., and Egami, T.: MeV electron-irradiation-induced structural change in the bcc phase of Zr–Hf–Nb alloy with an approximately equiatomic ratio. Intermetallics 38, 70 (2013).10.1016/j.intermet.2013.02.009
125.Tunes, M.A., Le, H., Greaves, G., Schön, C.G., Bei, H., Zhang, Y., Edmondson, P.D., and Donnelly, S.E.: Investigating sluggish diffusion in a concentrated solid solution alloy using ion irradiation with in situ TEM. Intermetallics 110, 106461 (2019).10.1016/j.intermet.2019.04.004
126.Zhang, Y., Zuo, T., Cheng, Y., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).
127.Huang, P-K. and Yeh, J-W.: Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings. Scr. Mater. 62, 105 (2010).
128.Chang, S-Y., Chen, M-K., and Chen, D-S.: Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization. J. Electrochem. Soc. 156, G37 (2009).
129.Rost, C.M., Sachet, E., Borman, T., Moballegh, A., Dickey, E.C., Hou, D., Jones, J.L., Curtarolo, S., and Maria, J-P.: Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).
130.Sarkar, A., Djenadic, R., Usharani, N.J., Sanghvi, K.P., Chakravadhanula, V.S.K., Gandhi, A.S., Hahn, H., and Bhattacharya, S.S.: Nanocrystalline multicomponent entropy stabilized transition metal oxides. J. Eur. Ceram. Soc. 37, 747 (2017).10.1016/j.jeurceramsoc.2016.09.018
131.Bérardan, D., Franger, S., Dragoe, D., Meena, A.K., and Dragoe, N.: Colossal dielectric constant in high entropy oxides. Phys. Status Solidi RRL 10, 328 (2016).
132.Sarkar, A., Wang, Q., Schiele, A., Chellali, M.R., Bhattacharya, S.S., Wang, D., Brezesinski, T., Hahn, H., Velasco, L., and Breitung, B.: High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 31, 1806236 (2019).
133.Bérardan, D., Franger, S., Meena, A.K., and Dragoe, N.: Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4, 9536 (2016).10.1039/C6TA03249D
134.Sarkar, A., Velasco, L., Wang, D., Wang, Q., Talasila, G., de Biasi, L., Kübel, C., Brezesinski, T., Bhattacharya, S.S., Hahn, H., and Breitung, B.: High entropy oxides for reversible energy storage. Nat. Commun. 9, 3400 (2018).10.1038/s41467-018-05774-5
135.Chen, J., Liu, W.X., Liu, J.X., Zhang, X.L., Yuan, M.Z., Zhao, Y.L., Yan, J.J., Hou, M.Q., Yan, J.Y., Kunz, M., Tamura, N., Zhang, H.Z., and Yin, Z.L.: Stability and compressibility of cation-doped high-entropy oxide MgCoNiCuZnO5. J. Phys. Chem. C 123, 17735 (2019).
136.Chen, H., Fu, J., Zhang, P., Peng, H., Abney, C.W., Jie, K., Liu, X., Chi, M., and Dai, S.: Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. J. Mater. Chem. A 6, 11129 (2018).
137.Gild, J., Samiee, M., Braun, J.L., Harrington, T., Vega, H., Hopkins, P.E., Vecchio, K., and Luo, J.: High-entropy fluorite oxides. J. Eur. Ceram. Soc. 38, 3578 (2018).
138.Jiang, S., Hu, T., Gild, J., Zhou, N., Nie, J., Qin, M., Harrington, T., Vecchio, K., and Luo, J.: A new class of high-entropy perovskite oxides. Scr. Mater. 142, 116 (2018).
139.Witte, R., Sarkar, A., Kruk, R., Eggert, B., Brand, R.A., Wende, H., and Hahn, H.: High-entropy oxides: An emerging prospect for magnetic rare-earth transition metal perovskites. Phys. Rev. Mater. 3, 8 (2019).
140.Gild, J., Zhang, Y., Harrington, T., Jiang, S., Hu, T., Quinn, M.C., Mellor, W.M., Zhou, N., Vecchio, K., and Luo, J.: High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016).
141.Harrington, T.J., Gild, J., Sarker, P., Toher, C., Rost, C.M., Dippo, O.F., McElfresh, C., Kaufmann, K., Marin, E., Borowski, L., Hopkins, P.E., Luo, J., Curtarolo, S., Brenner, D.W., and Vecchio, K.S.: Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater. 166, 271 (2019).10.1016/j.actamat.2018.12.054
142.Gild, J., Braun, J., Kaufmann, K., Marin, E., Harrington, T., Hopkins, P., Vecchio, K., and Luo, J.: A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. J. Materiomics 5, 337 (2019).
143.Zhang, R-Z., Gucci, F., Zhu, H., Chen, K., and Reece, M.J.: Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg. Chem. 57, 13027 (2018).
144.Heng, C., Huimin, X., Fu-Zhi, D., Jiachen, L., and Yanchun, Z.: High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion. J. Mater. Sci. Technol. 36, 134139 (2019).
145.Zhou, N., Jiang, S., Huang, T., Qin, M., Hu, T., and Luo, J.: Single-phase high-entropy intermetallic compounds (HEICs): Bridging high-entropy alloys and ceramics. Sci. Bull. 64, 856 (2019).
146.Suryanarayana, C., Ivanov, E., and Boldyrev, V.V.: The science and technology of mechanical alloying. Mater. Sci. Eng., A 304–306, 151 (2001).
147.Kim, G.E., Champagne, V.K., Trexler, M., and Sohn, Y.: Processing nanostructured metal and metal-matrix coatings by thermal and cold spraying, Nanostructured Metals and Alloys—Processing, Microstructure, Mechanical Properties, and Applications, Wang, S.H., ed. (Woodhead Publishing Ltd., Cambridge, U.K., 2011); pp. 615658.
148.Swann, S.: Magnetron sputtering. Phys. Technol. 19, 67 (1988).
149.Erb, U.: Electrodeposited nanocrystals: Synthesis, properties and industrial applications. Nanostruct. Mater. 6, 533 (1995).
150.Xiao, D.H., Zhou, P.F., Wu, W.Q., Diao, H.Y., Gao, M.C., Song, M., and Liaw, P.K.: Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr,Ti) high entropy alloys. Mater. Des. 116, 438 (2017).

Keywords

Type Description Title
WORD
Supplementary materials

Haché et al. supplementary material
Haché et al. supplementary material

 Word (82 KB)
82 KB

Nanostructured high-entropy materials

  • Michel J.R. Haché (a1), Changjun Cheng (a1) and Yu Zou (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.