Skip to main content
×
×
Home

New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships

  • Anubhav Jain (a1), Geoffroy Hautier (a2), Shyue Ping Ong (a3) and Kristin Persson (a4)
Abstract

Data mining has revolutionized sectors as diverse as pharmaceutical drug discovery, finance, medicine, and marketing, and has the potential to similarly advance materials science. In this paper, we describe advances in simulation-based materials databases, open-source software tools, and machine learning algorithms that are converging to create new opportunities for materials informatics. We discuss the data mining techniques of exploratory data analysis, clustering, linear models, kernel ridge regression, tree-based regression, and recommendation engines. We present these techniques in the context of several materials application areas, including compound prediction, Li-ion battery design, piezoelectric materials, photocatalysts, and thermoelectric materials. Finally, we demonstrate how new data and tools are making it easier and more accessible than ever to perform data mining through a new analysis that learns trends in the valence and conduction band character of compounds in the Materials Project database using data on over 2500 compounds.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships
      Available formats
      ×
Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: ajain@lbl.edu
References
Hide All
1. Hautier, G., Jain, A., and Ong, S.P.: From the computer to the laboratory: Materials discovery and design using first-principles calculations. J. Mater. Sci. 47(21), 73177340 (2012).
2. Rajan, K. and Mendez, P.: Materials informatics. Mater. Today 8(10), 3845 (2005).
3. Rupp, M., Proschak, E., and Schneider, G.: Kernel approach to molecular similarity based on iterative graph similarity. J. Chem. Inf. Model. 47(6), 22802286 (2007).
4. Rupp, M., Tkatchenko, A., Müller, K.-R., Lilienfeld, V., and Anatole, O.: Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
5. Hansen, K., Montavon, G., Biegler, F., Fazli, S., Rupp, M., Scheffler, M., Von Lilienfeld, O.A., Tkatchenko, A., and Müller, K.R.: Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9, 34043419 (2013).
6. Bergerhoff, G., Hundt, R., Sievers, R., and Brown, I.D.: The inorganic crystal-structure database. J. Chem. Inf. Comput. Sci. 23(2), 6669 (1983).
7. Allen, F.H.: The cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr., Sect. B: Struct. Sci. 58, 380388 (2002).
8. Villars, P.: The linus pauling file (LPF) and its application to materials design. J. Alloys Compd. 279(1), 17 (1998).
9. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Found. Adv. 32(5), 751767 (1976).
10. Brown, I.D. and Altermatt, D.: Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr., Sect. B: Struct. Sci. 244(2), 244247 (1985).
11. O'Keefe, M. and Brese, N.E.: Bond–valence parameters for solids. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 47, 192197 (1991).
12. Brown, I. and Wu, K.: Empirical parameters for calculating cation-oxygen bond valences. Acta Crystallogr., Sect. B: Struct. Sci. 32(31563), 19571959 (1976).
13. Brown, I.D.: On the geometry of OH…O hydrogen bonds. Acta Crystallogr., Sect. A: Found. Adv. 32(31563), 2431 (1976).
14. Yu, D. and Xue, D.: Bond analyses of borates from the inorganic crystal structure database. Acta Crystallogr., Sect. B: Struct. Sci. 62, 702709 (2006).
15. Mackay, A.L.: The statistics of the distribution of crystalline substances among the space groups. Acta Crystallogr. 22, 329330 (1967).
16. Urusov, V.S. and Nadezhina, T.N.: Frequency distribution and selection of space groups in inorganic crystal chemistry. J. Struct. Chem. 50, 2237 (2009).
17. Abrahams, S.C.: Inorganic structures in space group P3m1; Coordinate analysis and systematic prediction of new ferroelectrics. Acta Crystallogr., Sect. B: Struct. Sci. 64, 426437 (2008).
18. Avdeev, M., Sale, M., Adams, S., and Rao, R.P.: Screening of the alkali-metal ion containing materials from the inorganic crystal structure database (ICSD) for high ionic conductivity pathways using the bond valence method. Solid State Ionics 25 (2012).
19. Muller, O. and Roy, R.: The Major Ternary Structural Families (Springer-Verlag, New York, 1974).
20. Pettifor, D.G.: The structures of binary compound: I. Phenomenological structure maps. J. Phys. C: Solid State Phys. 19, 285313 (1986).
21. Pettifor, D.G.: Structure maps in alloy design. J. Chem. Soc., Faraday Trans. 86(8), 12091213 (1990).
22. Pettifor, D.G.: Structure maps revisited. J. Phys.: Condens. Matter 15, 1316 (2003).
23. Morgan, D., Rodgers, J., and Ceder, G.: Automatic construction, implementation and assessment of Pettifor maps. J. Phys.: Condens. Matter 15, 43614369 (2003).
24. Kong, C.S., Luo, W., Arapan, S., Villars, P., Iwata, S., Ahuja, R., and Rajan, K.: Information-theoretic approach for the discovery of design rules for crystal chemistry. J. Chem. Inf. Model 52, 18121820 (2012).
25. White, P.S., Rodgers, J.R., and Le Page, Y.: Crystmet: A database of the structures and powder patterns of metals and intermetallics. Acta Crystallogr., Sect. B: Struct. Sci. 58, 343348 (2002).
26. Villars, P. and Cenzual, K.: Pearsons crystal data: Crystal structure database for inorganic compounds (ASM International/Material Phases Data System, Vitznau, Switzerland, 2010).
27. Glasser, L.: Crystallographic information resources. J. Chem. Educ. (2015). acs.jchemed.5b00253.
28. SpringerMaterials: The Landolt-Börnstein database. www.springermaterials.com/.
29. Bale, C., Bélisle, E., Chartrand, P., Decterov, S., Eriksson, G., Hack, K., Jung, I-H., Kang, Y-B., Melançon, J., Pelton, A., Robelin, C., and Petersen, S.: FactSage thermochemical software and databases recent developments. Calphad 33(2), 295311 (2009).
30. Linstrom, P. and Mallard, W.: NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg MD 20899, 2015).
31. L. MatWeb: MatWeb, Material property data, Data base of materials data sheets.
32. MatNavi: NIMS materials database. http://mits.nims.go.jp/index_en.html. (2014).
33. Kubaschewski, O., Alcock, C.B., and Spencer, P.J.: Thermochemical Data, in: Materials Thermochemistry, 6th ed. (Pergamon Press, Oxford, 1993); ch. 5, p. 376.
34. Okamoto, H.: In Handbook of Ternary Alloy Phase Diagrams, Villars, P., Prince, A., and Okamoto, H. eds.; (ASM International: OH, 1995); pp. 1037810379.
35. Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864B871 (1964).
36. Kohn, W. and Sham, L.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 11331138 (1965).
37. Jong, M.D., Chen, W., Angsten, T., Jain, A., Notestine, R., Gamst, A., Sluiter, M., Ande, C.K., Zwaag, S.V.D., Plata, J.J., Toher, C., Curtarolo, S., Ceder, G., Persson, K.A., and Asta, M.: Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2, 113 (2015).
38. Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K.A.: Performance of genetic algorithms in search for water splitting perovskites. APL Mater. 1, 011002 (2013).
39. Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R.H., Nelson, L.J., Hart, G.L.W., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., and Levy, O.: Aflowlib.org: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227235 (2012).
40. Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., and Wolverton, C.: Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD). JOM 65(11), 15011509 (2013).
41. Hachmann, J., Olivares-Amaya, R., Atahan-Evrenk, S., Amador-Bedolla, C., Sanchez-Carrera, R.S., Gold-Parker, A., Vogt, L., Brockway, A.M., and Aspuru-Guzik, A.: The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J. Phys. Chem. Lett. 2(17), 22412251 (2011).
42. Ortiz, C., Eriksson, O., and Klintenberg, M.: Data mining and accelerated electronic structure theory as a tool in the search for new functional materials. Comput. Mater. Sci. 44(4), 10421049 (2009).
43. Blokhin, E., Pardini, L., Mohamed, F., Hannewald, K., Ghiringhelli, L., Pavone, P., Carbogno, C., Freytag, J-C., Draxl, C., and Scheffler, M.: The NoMaD Repository. http://nomad-repository.eu/.
44. Stevanović, V., Lany, S., Zhang, X., and Zunger, A.: Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys. Rev. B: Condens. Matter Mater. Phys. 85(11), 112 (2012).
45. Landis, D.D., Hummelshøj, J.S., Nestorov, S., Greeley, J., Dulak, M., Bligaard, T., Norskov, J., and Jacobsen, K.: The computational materials repository. Comput. Sci. Eng. 14, 5157 (2012).
46. Hummelshøj, J.S., Abild-Pedersen, F., Studt, F., Bligaard, T., and Nørskov, J.K.: CatApp: A web application for surface chemistry and heterogeneous catalysis. Angew. Chem., Int. Ed. Engl. 51(1), 272274 (2012).
47. Togo, A. and Tanaka, I.: First principles phonon calculations in materials science. Scr. Mater. 108, 15 (2015).
48. Togo, A.: PhononDB at Kyoto University (http://phonondb.mtl.kyoto-u.ac.jp).
49. Gorai, P., Gao, D., Ortiz, B., Miller, S., Barnett, S.A., Mason, T., Lv, Q., Stevanović, V., and Toberer, E.S.: Te design lab: A virtual laboratory for thermoelectric material design. Comput. Mater. Sci. 112, 368376 (2016).
50. Yuan, G. and Gygi, F.: Estest: A framework for the validation and verification of electronic structure codes. Comput. Sci. Discovery 3(1), 015004 (2010).
51. Pence, H.E. and Williams, A.: ChemSpider: An online chemical information resource. J. Chem. Educ. 87(11), 11231124 (2010).
52. Lin, L.: Materials databases infrastructure constructed by first principles calculations: A review. Mater. Perform. Charact. 4, MPC20150014 (2015).
53. Ong, S.P., Richards, W.D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V.L., Persson, K.A., and Ceder, G.: Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314319 (2013).
54. Bahn, S. and Jacobsen, K.: An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4(3), 5666 (2002).
55. Curtarolo, S., Setyawan, W., Hart, G.L., Jahnatek, M., Chepulskii, R.V., Taylor, R.H., Wang, S., Xue, J., Yang, K., Levy, O., Mehl, M.J., Stokes, H.T., Demchenko, D.O., and Morgan, D., AFLOW: An automatic framework for high-throughput materials discovery, Comput. Mater. Sci. 58, 218226 (2012).
56. Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., and Kozinsky, B.: AiiDA: automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 111, 218230 (2016).
57. Jain, A., Ong, S., Chen, W., Medasani, B., Qu, X., Kocher, M., Brafman, M., Petretto, G., Rignanese, G-M., Hautier, G., Gunter, D., and Persson, K.: FireWorks: a dynamic workflow system designed for high-throughput applications. Concurr. Comput. Pract. Exp. 27, 50375059 (2015).
58. Fielding, R.T.: Architectural styles and the design of network-based software architectures. Ph.D. Dissertation, University of California, Irvine, 2000.
59. Ong, S.P., Cholia, S., Jain, A., Brafman, M., Gunter, D., Ceder, G., and Persson, K.A.: The materials application programming interface (API): A simple, flexible and efficient API for materials data based on REpresentational state transfer (REST) principles. Comput. Mater. Sci. 97, 209215 (2015).
60. Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, 2nd ed. (Springer, New York, 2009); ch. 4, pp. 80113.
61. Ghiringhelli, L.M., Vybiral, J., Levchenko, S.V., Draxl, C., and Scheffler, M.: Big data of materials science : Critical role of the descriptor. Phys. Rev. Lett. 114, 105503 (2015).
62. Yang, K., Setyawan, W., Wang, S., Buongiorno Nardelli, M., and Curtarolo, S.: A search model for topological insulators with high-throughput robustness descriptors. Nat. Mater. 11(7), 614619 (2012).
63. Burzlaff, H. and Zimmermann, H.: On symmetry classes of crystal structures. Acta Crystallogr., Sect. A: Found. Crystallogr. 65, 456465 (2009).
64. Allmann, R. and Hinek, R.: The introduction of structure types into the inorganic crystal structure database ICSD. Acta Crystallogr., Sect. A: Found. Crystallogr. 63, 412417 (2007).
65. Hautier, G., Fischer, C.C., Jain, A., Mueller, T., and Ceder, G.: Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chem. Mater. 22(12), 37623767 (2010).
66. Hautier, G., Fischer, C., Ehrlacher, V., Jain, A., and Ceder, G.: Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50(17), 656663 (2010).
67. Behler, J. and Parrinello, M.: Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98(14), 146401 (2007).
68. Yang, L., Dacek, S., and Ceder, G.: Proposed definition of crystal substructure and substructural similarity. Phys. Rev. B: Condens. Matter Mater. Phys. 90(5), 054102 (2014).
69. Oganov, A.R. and Valle, M.: How to quantify energy landscapes of solids. J. Chem. Phys. 130(10), 104504 (2009).
70. Isayev, O., Fourches, D., Muratov, E.N., Oses, C., Rasch, K., Tropsha, A., and Curtarolo, S.: Materials cartography: Representing and mining material space using structural and electronic fingerprints. Chem. Mater. 27, 735743 (2014).
71. Faber, F., Lindmaa, A., von Lilienfeld, O.A., and Armiento, R.: Crystal structure representations for machine learning models of formation energies. Int. J. Quantum Chem. 115, 18 (2015).
72. Kong, C.S., Broderick, S.R., Jones, T.E., Loyola, C., Eberhart, M.E., and Rajan, K.: Mining for elastic constants of intermetallics from the charge density landscape. Phys. B 458, 17 (2015).
73. Seko, A., Maekawa, T., Tsuda, K., and Tanaka, I.: Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids. Phys. Rev. B: Condens. Matter Mater. Phys. 89, 054303 (2014).
74. Schmidt, M. and Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 8185 (2009).
75. Jain, A., Hautier, G., Moore, C.J., Ong, S.P., Fischer, C.C., Mueller, T., Persson, K.A., Ceder, G., and Ping Ong, S.: A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 22952310 (2011).
76. Hautier, G., Jain, A., Ong, S.P., Kang, B., Moore, C., Doe, R., and Ceder, G.: Phosphates as lithium-ion battery Cathodes: An evaluation based on high-throughput ab initio calculations. Chem. Mater. 23, 35083945 (2011).
77. Jain, A., Hautier, G., Ong, S.P., Dacek, S., and Ceder, G.: Relating voltage and thermal safety in Li-ion battery cathodes: a high-throughput computational study. Phys. Chem. Chem. Phys. 17, 59425953 (2015).
78. Ong, S.P., Jain, A., Hautier, G., Kang, B., and Ceder, G.: Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations. Electrochem. Commun. 12(3), 427430 (2010).
79. Godshall, N.A., Raistrick, I.D., and Huggins, R.A.: Relationships among electrochemical, thermodynamic, and oxygen potential quantities in lithium-transition metal-oxygen molten salt cells. J. Electrochem. Soc. 131(3), 543 (1984).
80. Xu, R. and Wunsch II, D.: Survey of clustering algorithms, neural networks, IEEE Trans. Neural Networks 16, 645678 (2005).
81. Gan, G., Ma, C., and Wu, J.: Data clustering: theory, algorithms, and applications, Vol. 20 (Society for Industrial and Applied Mathematics, Philadelphia, 2007).
82. Meredig, B. and Wolverton, C.: Dissolving the periodic table in cubic zirconia: Data mining to discover chemical trends. Chem. Mater. 26(6), 19851991 (2014).
83. Castelli, I.E. and Jacobsen, K.W.: Designing rules and probabilistic weighting for fast materials discovery in the perovskite structure. Modell. Simul. Mater. Sci. Eng. 22(5), 055007 (2014).
84. Broderick, S.R., Aourag, H., and Rajan, K.: Classification of oxide compounds through data-mining density of states spectra. J. Am. Ceram. Soc. 94(9), 29742980 (2011).
85. Andersen, R.: Modern Methods for Robust Regression (Sage, Los Angeles, 2008).
86. Chelikowsky, J.R. and Anderson, K.E.: Melting point trends in intermetallic alloys. J. Phys. Chem. Solids 48(2), 197205 (1987).
87. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267288 (1996).
88. Zou, H. and Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67(2), 301320 (2005).
89. Dey, P., Bible, J., Datta, S., Broderick, S., Jasinski, J., Sunkara, M., Menon, M., and Rajan, K.: Informatics-aided bandgap engineering for solar materials. Comput. Mater. Sci. 83, 185195 (2014).
90. Srinivasan, S. and Rajan, K.: “Property phase diagrams” for compound semiconductors through data mining. Materials 6(1), 279290 (2013).
91. Kong, C.S. and Rajan, K.: Rational design of binary halide scintillators via data mining. Nucl. Instrum. Methods Phys. Res., Sect. A 680, 145154 (2012).
92. Toda-Caraballo, I., Galindo-Nava, E.I., and Rivera-Díaz-Del-Castillo, P.E.J.: Unravelling the materials genome: Symmetry relationships in alloy properties. J. Alloys Compd. 566, 217228 (2013).
93. Park, W.B., Singh, S.P., Kim, M., and Sohn, K-S.: Phosphor informatics based on confirmatory factor analysis. ACS Comb. Sci. 150408124118005 (2015).
94. Curtarolo, S., Morgan, D., Persson, K., Rodgers, J., and Ceder, G.: Predicting crystal structures with data mining of quantum calculations. Phys. Rev. Lett. 91(13), 135503 (2003).
95. Balachandran, P.V., Broderick, S.R., and Rajan, K.: Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning. Proc. R. Soc. A 467, 22712290 (2011).
96. Cristianini, N. and Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (Cambridge University Press, 2000).
97. Pilania, G., Wang, C., Jiang, X., Rajasekaran, S., and Ramprasad, R.: Accelerating materials property predictions using machine learning. Sci. Rep. 3, 2810 (2013).
98. Schütt, K.T., Glawe, H., Brockherde, F., Sanna, A., Müller, K.R., and Gross, E.K.U.: How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Phys. Rev. B: Condens. Matter Mater. Phys. 89, 15 (2014).
99. Jalem, R., Nakayama, M., and Kasuga, T.: An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks. J. Mater. Chem. A 2(3), 720 (2014).
100. Pettersson, F., Suh, C., Saxen, H., Rajan, K., and Chakraborti, N.: Analyzing sparse data for nitride spinels using data mining, neural networks, and multiobjective genetic algorithms. Mater. Manuf. Processes 24(1), 29 (2009).
101. Scott, D., Manos, S., and Coveney, P.: Design of electroceramic materials using artificial neural networks and multiobjective evolutionary algorithms. J. Chem. Inf. Model. 48, 262273 (2008).
102. Zhang, Y., Yang, S., and Evans, J.: Revisiting Hume-Rotherys rules with artificial neural networks. Acta Mater. 56(5), 10941105 (2008).
103. Carrete, J., Mingo, N., Wang, S., and Curtarolo, S.: Nanograined half-heusler semiconductors as advanced Thermoelectrics: An ab initio high-throughput statistical study. Adv. Funct. Mater. 24, 74277432 (2014).
104. Liaw, A. and Wiener, M.: Classification and regression by randomForest. R News 2(3), 1822 (2002).
105. Meredig, B., Agrawal, A., Kirklin, S., Saal, J.E., Doak, J.W., Thompson, A., Zhang, K., Choudhary, A., and Wolverton, C.: Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B: Condens. Matter Mater. Phys. 89(9), 094104 (2014).
106. Bell, R., Koren, Y., and Volinsky, C.: Chasing $1,000,000: How We Won The Netflix Progress Prize, Statistical Computing and Statistical Graphics Newsletter 18(2), 412 (2007).
107. Fischer, C.C., Tibbetts, K.J., Morgan, D., and Ceder, G.: Predicting crystal structure by merging data mining with quantum mechanics. Nature Mater. 5(8), 641646 (2006).
108. Fix, T., Sahonta, S-L., Garcia, V., MacManus-Driscoll, J.L., and Blamire, M.G.: Structural and Dielectric Properties of SnTiO3, a putative ferroelectric. Cryst. Growth Des. 11, 14221426 (2011).
109. Jain, A., Hautier, G., Moore, C.J., Kang, B., Lee, J., Chen, H., Twu, N., and Ceder, G.: A computational investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as cathodes for Li ion batteries. J. Electrochem. Soc. 159(5), A622A633 (2012).
110. Kuang, Q., Xu, J., Zhao, Y., Chen, X., and Chen, L.: Layered monodiphosphate Li9V3(P2O7)3(PO4)2: A novel cathode material for lithium-ion batteries. Electrochim. Acta 56(5), 22012205 (2011).
111. Chen, H., Hautier, G., and Ceder, G.: Synthesis, computed stability and crystal structure of a new family of inorganic compounds: Carbonophosphates. J. Am. Chem. Soc. 134(48), 1961919627 (2012).
112. Hautier, G., Jain, A., Chen, H., Moore, C., Ong, SP., and Ceder, G.: Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J. Mater. Chem. 21, 1714717153 (2011).
113. Jähne, C., Neef, C., Koo, C., Meyer, H-P., and Klingeler, R.: A new LiCoPO4 polymorph via low temperature synthesis. J. Mater. Chem. A 1(8), 2856 (2013).
114. Snyder, K., Raguž, B., Hoffbauer, W., Glaum, R., Ehrenberg, H., and Herklotz, M.: Lithium copper(I) orthophosphates Li3−xCuxPO4 : Synthesis, crystal structures, and electrochemical properties. Z. Anorg. Allg. Chem. 640(5), 944951 (2014).
115. Mosymow, E., Glaum, R., and Kremer, R.K.: Searching for “LiCrIIPO4. J. Solid State Chem. 218, 131140 (2014).
116. Yang, L. and Ceder, G.: Data-mined similarity function between material compositions. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 224107 (2013).
117. Gaultois, M.W., Oliynyk, A.O., Mar, A., Sparks, T.D., Mulholland, G.J., and Meredig, B.: A recommendation engine for suggesting unexpected thermoelectric chemistries. 7, (2015), 7arXiv: 1502.07635.
118. Seko, A., Togo, A., Hayashi, H., Tsuda, K., Chaput, L., and Tanaka, I.: Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization, Phys. Rev. Lett. 115(20), 205901 (2015).
119. Turner, H. and Firth, D.: Bradley-Terry models in R: The BradleyTerry2 Package. J. Stat. Software 48(9), 121 (2012).
120. Bradley, R.A. and Terry, M.E.: Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika 39, 324345 (1952).
121. Robertson, J. and Clark, S.J.: Limits to doping in oxides. Phys. Rev. B 83(7), 075205 (2011).
122. Scanlon, D.O. and Watson, G.W.: On the possibility of p-type SnO2 . J. Mater. Chem. 22(48), 25236 (2012).
123. Zunger, A.: Practical doping principles. Appl. Phys. Lett. 83(1), 57 (2003).
124. Kawazoe, H., Yasukawa, M., and Hyodo, H.: P-type electrical conduction in transparent thin films of CuAlO2 . Nature 389, 939942 (1997).
125. Sheng, S., Fang, G., Li, C., Xu, S., and Zhao, X.: p-type transparent conducting oxides. Phys. Status Solidi A 203(8), 18911900 (2006).
126. Kudo, A., Yanagi, H., Hosono, H., and Kawazoe, H.: SrCu2O2: A p-type conductive oxide with wide band gap. Appl. Phys. Lett. 73(2), 220 (1998).
127. Trimarchi, G., Peng, H., Im, J., Freeman, A., Cloet, V., Raw, A., Poeppelmeier, K., Biswas, K., Lany, S., and Zunger, A.: Using design principles to systematically plan the synthesis of hole-conducting transparent oxides: Cu3VO4 and Ag3VO4 as a case study. Phys. Rev. B 84(16), 165116 (2011).
128. Walsh, A. and Da Silva, J.L.F., Wei, S-H.: Multi-component transparent conducting oxides: Progress in materials modelling. J. Phys.: Condens. Matter 23(33), 334210 (2011).
129. Hautier, G., Miglio, A., Ceder, G., Rignanese, G-M., and Gonze, X.: Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 2292 (2013).
130. Peng, H. and Lany, S.: Semiconducting transition-metal oxides based on d$5 cations: Theory for MnO and Fe2O3 . Phys. Rev. B: Condens. Matter Mater. Phys. 85(85), 201202 (2012).
131. Arlot, S. and Celisse, A.: A survey of cross-validation procedures for model selection. Stat. Surveys 4, 4079 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Jain supplementary material
Jain supplementary material 1

 Word (182 KB)
182 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed