Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T07:23:15.064Z Has data issue: false hasContentIssue false

A new procedure for measuring the decohesion energy for thin ductile films on substrates

Published online by Cambridge University Press:  03 March 2011

A. Bagchi
Affiliation:
Materials Department, College of Engineering, University of California-Santa Barbara, Santa Barbara, California 93106–5050
G.E. Lucas
Affiliation:
Materials Department, College of Engineering, University of California-Santa Barbara, Santa Barbara, California 93106–5050
Z. Suo
Affiliation:
Materials Department, College of Engineering, University of California-Santa Barbara, Santa Barbara, California 93106–5050
A.G. Evans
Affiliation:
Materials Department, College of Engineering, University of California-Santa Barbara, Santa Barbara, California 93106–5050
Get access

Abstract

A novel testing technique has been developed capable of measuring the interfacial fracture resistance, Γi, of thin ductile films on substrates. In this technique, the thin film on the substrate is stressed by depositing onto the film a second superlayer of material, having a large intrinsic stress, such as Cr. Subsequent processing defines a precrack at the interface between the film and the substrate. The strain energy available for driving the debond crack is modulated by varying the thickness of the Cr superlayer. Spontaneous decohesion occurs for superlayers exceeding a critical thickness. The latter is used to obtain Γi from elasticity solutions for residually stressed thin films. The technique has been demonstrated for Cu thin films on silica substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ho, P. S., Appl. Surf. Sci. 41–42, 559 (1989).Google Scholar
2Thouless, M. D., J. Vac. Sci. Technol. A 9, 2510 (1991).CrossRefGoogle Scholar
3Hutchinson, J. W. and Suo, Z., Adv. Appl. Mech. 29, 63 (1992).CrossRefGoogle Scholar
4Evans, A. G., Riihle, M., Dalgleish, B. J., and Charalambides, P. G., Metall. Trans. 21A, 2419 (1990).CrossRefGoogle Scholar
5Charalambides, P. G., Lund, J., Evans, A. G., and McMeeking, R. M., J. Appl. Mech. 56, 77 (1989).CrossRefGoogle Scholar
6Wang, J. S. and Suo, Z., Acta Metall. Mater. 38, 1279 (1990).CrossRefGoogle Scholar
7Ahn, J., Mittal, K. L., and MacQueen, R. H., Adhesion Measurement of Thin Films, Thick Films, and Bulk Coatings, ASTM STP 640, edited by Mittal, K. L. (American Society for Testing and Materials, 1978), p. 134.CrossRefGoogle Scholar
8Wu, T. W., J. Mater. Res. 6, 407 (1991).CrossRefGoogle Scholar
9Venkataraman, S., Kohlstedt, D. L., and Gerberich, W. W., J. Mater. Res. 7, 1126 (1992).CrossRefGoogle Scholar
10Kim, K-S. and Aravas, N., Int. J. Solids Struct. 24, 417 (1988).CrossRefGoogle Scholar
11Kim, K-S. and Kim, J., J. Eng. Mat. Tech. 110, 266 (1988).CrossRefGoogle Scholar
12Allen, M. G. and Senturia, S. D., J. Adhesion 25, 303 (1988).CrossRefGoogle Scholar
13Allen, M. G. and Senturia, S. D., J. Adhesion 29, 219 (1989).CrossRefGoogle Scholar
14Evans, A. G. and Dalgleish, B. J., Acta Metall. Mater. 40, Suppl., S295 (1992).CrossRefGoogle Scholar
15Jokl, M. L., Vitek, V., and McMahon, C. J. Jr., Acta Metall. Mater. 28, 1479 (1980).CrossRefGoogle Scholar
16Tvergaard, V. and Hutchinson, J. W., J. Mech. Phys. Solids 41, 1119 (1993).CrossRefGoogle Scholar
17Drory, M. D., Thouless, M. D., and Evans, A. G., Acta Metall. Mater. 36, 2019 (1988).CrossRefGoogle Scholar
18Timoshenko, S., J. Opt. Soc. Am. 11, 223 (1925).CrossRefGoogle Scholar
19Hu, M. S. and Evans, A. G., Acta Metall. Mater. 37, 917 (1989).CrossRefGoogle Scholar
20Wong, S. S., Cho, J. S., Kang, H. K., and Ting, C. H., Electronic Packaging Materials Science V, edited by Lillie, E. D., Ho, P. S., Jaccodine, R., and Jackson, K. (Mater. Res. Soc. Symp. Proc. 203, Pittsburgh, PA, 1991), p. 347.Google Scholar
21Stoney, G. G., Proc. R. Soc. London Ser. A 82, 172 (1909).Google Scholar
22Thomas, M. E., Hartnett, M. P., and Mckay, J. E., J. Vac. Sci. Technol. A 6, 2570 (1988).CrossRefGoogle Scholar
23Abermann, R., Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L. B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 25.Google Scholar
24Ruud, J. A., Josell, D., Spaepen, F., and Greer, A. L., J. Mater. Res. 8, 112 (1993).CrossRefGoogle Scholar
25Janda, M., Thin Solid Films 142, 37 (1986).CrossRefGoogle Scholar
26Cannon, R. M., Fisher, R. M., and Evans, A. G., Thin Films—Interfaces and Phenomena, edited by Nemanich, R. J., Ho, P. S., and Lau, S. S. (Mater. Res. Soc. Symp. Proc. 54, Pittsburgh, PA, 1986), p. 799.Google Scholar
27Li, J. G., J. Mater. Sci. Lett. 11, 903 (1992).CrossRefGoogle Scholar