Skip to main content

Nitrogen-doped carbon “spider webs” derived from pyrolysis of polyaniline nanofibers in ammonia for capacitive energy storage

  • Yu Song (a1), Zengming Qin (a1), Zihang Huang (a1), Tianyu Liu (a2), Yat Li (a2) and Xiao-Xia Liu (a1)...

Heteroatom-doped carbon materials have attracted immense interest as advanced supercapacitor electrode materials due to their unique properties. A carbon cloth-supported, nitrogen-doped carbon “spider web” network full of macropores and mesopores is developed via the pyrolysis of polyaniline nanofibers in ammonia atmosphere. The presence of mesopores and macropores can provide ion-buffering reservoirs to shorten the ion diffusion distance to the interior part of the carbon network. Carbonization in ammonia introduced N heteroatoms through gas phase chemical reactions between ammonia and the oxygen functionalities on the carbon surface. The enhanced ion-accessible surface area and improved charge transfer rate can be achieved. The N-doped carbon “spider web” exhibited a high specific capacitance of 266 F/g at a scan rate of 2 mV/s. Even when the scan rate was increased to 500 mV/s, 61% of its capacitance could still be retained, evidencing its excellent rate performance. The demonstrated strategy is anticipated to be generally effective for preparing heteroatom-doped carbon electrodes with other polymers.

Corresponding author
a) Address all correspondence to these authors. e-mail:
b) e-mail:
Hide All

These authors contributed equally to this work.


This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to

Contributing Editor: Marcus A. Worsley

Hide All
1. Augustyn V., Simon P., and Dunn B.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014).
2. Chen L.F., Zhang X.D., Liang H.W., Kong M., Guan Q.F., Chen P., Wu Z.Y., and Yu S.H.: Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6, 7092 (2012).
3. Dutta S., Bhaumik A., and Wu K.C.W.: Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574 (2014).
4. Feng D-Y., Song Y., Huang Z-H., Xu X-X., and Liu X-X.: Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor. J. Power Sources 324, 788 (2016).
5. Liu T., Zhang F., Song Y., and Li Y.: Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705 (2017).
6. Zhai T., Lu X., Wang H., Wang G., Mathis T., Liu T., Li C., Tong Y., and Li Y.: An electrochemical capacitor with applicable energy density of 7.4 W h/kg at average power density of 3000 W/kg. Nano Lett. 15, 3189 (2015).
7. Yu M., Lin D., Feng H., Zeng Y., Tong Y., and Lu X.: Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew. Chem., Int. Ed. 56, 5454 (2017).
8. Yu M., Zhao S., Feng H., Hu L., Zhang X., Zeng Y., Tong Y., and Lu X.: Engineering thin MoS2 nanosheets on TiN nanorods: Advanced electrochemical capacitor electrode and hydrogen evolution electrocatalyst. ACS Energy Lett. 2, 1862 (2017).
9. Zeng Y., Yu M., Meng Y., Fang P., Lu X., and Tong Y.: Iron-based supercapacitor electrodes: Advances and challenges. Adv. Energy Mater. 6, 1601053 (2016).
10. Lu X., Liu T., Zhai T., Wang G., Yu M., Xie S., Ling Y., Liang C., Tong Y., and Li Y.: Improving the cycling stability of metal-nitride supercapacitor electrodes with a thin carbon shell. Adv. Energy Mater. 4, 1300994 (2014).
11. Lu X., Yu M., Wang G., Zhai T., Xie S., Ling Y., Tong Y., and Li Y.: H–TiO2@MnO2//H–TiO2@C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 25, 267 (2013).
12. Song Y., Liu T., Yao B., Li M., Kou T., Huang Z-H., Feng D-Y., Wang F., Tong Y., Liu X-X., and Li Y.: Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2, 1752 (2017).
13. Song Y., Liu T.Y., Yao B., Kou T.Y., Feng D.Y., Liu X.X., and Li Y.: Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability. Small 13, 1700067 (2017).
14. Zhai T., Wan L., Sun S., Chen Q., Sun J., Xia Q., and Xia H.: Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29, 1604167 (2017).
15. Yao B., Huang L., Zhang J., Gao X., Wu J., Cheng Y., Xiao X., Wang B., Li Y., and Zhou J.: Flexible transparent molybdenum trioxide nanopaper for energy storage. Adv. Mater. 28, 6353 (2016).
16. Zhang F., Liu T., Li M., Yu M., Luo Y., Tong Y., and Li Y.: Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097 (2017).
17. Song Y., Liu T., Qian F., Zhu C., Yao B., Duoss E., Spadaccini C., Worsley M., and Li Y.: Three-dimensional carbon architectures for electrochemical capacitors. J. Colloid Interface Sci., 509, 529 (2017).
18. Yao B., Zhang J., Kou T., Song Y., Liu T., and Li Y.: Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4, 1700107 (2017).
19. Wang D.W., Li F., Liu M., Lu G.Q., and Cheng H.M.: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 47, 373 (2008).
20. Zhang W., Lin H., Lin Z., Yin J., Lu H., Liu D., and Zhao M.: 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method. ChemSusChem 8, 2114 (2015).
21. Zhang F., Liu T., Hou G., Kou T., Yue L., Guan R., and Li Y.: Hierarchically porous carbon foams for electric double layer capacitors. Nano Res. 9, 2875 (2016).
22. Yuan D-s., Zhou T-x., Zhou S-l., Zou W-j., Mo S-s., and Xia N-n.: Nitrogen-enriched carbon nanowires from the direct carbonization of polyaniline nanowires and its electrochemical properties. Electrochem. Commun. 13, 242 (2011).
23. Chaudhari S., Kwon S.Y., and Yu J-S.: Ordered multimodal porous carbon with hierarchical nanostructure as high performance electrode material for supercapacitors. RSC Adv. 4, 38931 (2014).
24. Wang Q., Yan J., Wang Y., Wei T., Zhang M., Jing X., and Fan Z.: Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67, 119 (2014).
25. Zhu S., Li J., He C., Zhao N., Liu E., Shi C., and Zhang M.: Soluble salt self-assembly-assisted synthesis of three-dimensional hierarchical porous carbon networks for supercapacitors. J. Mater. Chem. A 3, 22266 (2015).
26. Ewert J.K., Weingarth D., Denner C., Friedrich M., Zeiger M., Schreiber A., Jäckel N., Presser V., and Kempe R.: Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids. J. Mater. Chem. A 3, 18906 (2015).
27. Han J., Xu G., Ding B., Pan J., Dou H., and MacFarlane D.R.: Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J. Mater. Chem. A 2, 5352 (2014).
28. Hou J., Cao C., Idrees F., and Ma X.: Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556 (2015).
29. Lai L., Potts J.R., Zhan D., Wang L., Poh C.K., Tang C., Gong H., Shen Z., Lin J., and Ruoff R.S.: Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5, 7936 (2012).
30. Qie L., Chen W., Xu H., Xiong X., Jiang Y., Zou F., Hu X., Xin Y., Zhang Z., and Huang Y.: Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 6, 2497 (2013).
31. Luo W., Wang B., Heron C.G., Allen M.J., Morre J., Maier C.S., Stickle W.F., and Ji X.: Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation. Nano Lett. 14, 2225 (2014).
32. Wang G., Wang H., Lu X., Ling Y., Yu M., Zhai T., Tong Y., and Li Y.: Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 26, 2676 (2014).
33. Zhang Q.e., Zhou A., Wang J., Wu J., and Bai H.: Degradation-induced capacitance: A new insight into the superior capacitive performance of polyaniline/graphene composites. Energy Environ. Sci., 10, 2372 (2017).
34. Luo Y., Kong D., Jia Y., Luo J., Lu Y., Zhang D., Qiu K., Li C.M., and Yu T.: Self-assembled graphene@PANI nanoworm composites with enhanced supercapacitor performance. RSC Adv. 3, 5851 (2013).
35. Wang L., Yao Q., Bi H., Huang F., Wang Q., and Chen L.: PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. J. Mater. Chem. A 3, 7086 (2015).
36. Huang Z.H., Liu T.Y., Song Y., Li Y., and Liu X.X.: Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale, 9, 13119 (2017).
37. Hulicova-Jurcakova D., Kodama M., Shiraishi S., Hatori H., Zhu Z.H., and Lu G.Q.: Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv. Funct. Mater. 19, 1800 (2009).
38. Yang M., Zhong Y., Bao J., Zhou X., Wei J., and Zhou Z.: Achieving battery-level energy density by constructing aqueous carbonaceous supercapacitors with hierarchical porous N-rich carbon materials. J. Mater. Chem. A 3, 11387 (2015).
39. Li Z., Xu Z., Wang H., Ding J., Zahiri B., Holt C.M.B., Tan X., and Mitlin D.: Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ. Sci. 7, 1708 (2014).
40. Song Y., Liu T-Y., Xu G-L., Feng D-Y., Yao B., Kou T-Y., Liu X-X., and Li Y.: Tri-layered graphite foil for electrochemical capacitors. J. Mater. Chem. A 4, 7683 (2016).
41. Li L., Liu E., Li J., Yang Y., Shen H., Huang Z., Xiang X., and Li W.: A doped activated carbon prepared from polyaniline for high performance supercapacitors. J. Power Sources 195, 1516 (2010).
42. Song Y., Xu J-L., and Liu X-X.: Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. J. Power Sources 249, 48 (2014).
43. Li Z., Zhang L., Amirkhiz B.S., Tan X., Xu Z., Wang H., Olsen B.C., Holt C.M.B., and Mitlin D.: Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2, 431 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 90 *
Loading metrics...

* Views captured on Cambridge Core between 7th December 2017 - 22nd January 2018. This data will be updated every 24 hours.