Skip to main content

Nonmetal element doped g-C3N4 with enhanced H2 evolution under visible light irradiation

  • Yidan Luo (a1), Jiaming Wang (a1), Shuohan Yu (a1), Yuan Cao (a1), Kaili Ma (a1), Yu Pu (a1), Weixin Zou (a1), Changjin Tang (a1), Fei Gao (a2) and Lin Dong (a1)...

Graphitic carbon nitride (g-C3N4) is considered as a promising heterogeneous catalyst for photocatalytic H2 evolution from water under visible light illustration, and its photocatalytic performance could be controlled through its texture and optical/electronic properties. Herein, we present a facile one-step heating method for the synthesis of B/P/F doped g-C3N4 photocatalysts (BCN, PCN, and FCN). The prepared photocatalysts were characterized by XRD, SEM, UV-vis absorption, FTIR, BET, XPS, PL, and photocurrent measurement. The results show that the B/P/F doping increased the interplanar stacking distance of g-C3N4, enlarged the optical absorption range, and improved the photocatalytic activity of H2 evolution. FCN exhibits the highest photocatalytic activity, followed by BCN, and PCN that has the lowest performance. This work studies the doping effects of the nonmetal elements on the photocatalytic activities, the electronic structures as well as the band gaps of g-C3N4, to provide a feasible modification pathway to design and synthesize highly efficient photocatalysts.

Corresponding author
a) Address all correspondence to these authors. e-mail:
b) e-mail:
Hide All

Contributing Editor: Tianyu Liu

Hide All
1. Fujishima A. and Honda K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 3738 (1972).
2. Luo Y.D., Yu S.H., Li B., Dong L.H., Wang F., Fan M.G., and Zhang F.Y.: Synthesis of (Ag,F)-modified anatase TiO2 nanosheets and their enhanced photocatalytic activity. New J. Chem. 40, 21352144 (2016).
3. Sin J.C., Lam S.M., Satoshi I., Lee K.T., and Mohamed A.R.: Sunlight photocatalytic activity enhancement and mechanism of novel europium-doped ZnO hierarchical micro/nanospheres for degradation of phenol. Appl. Catal., B 148–149, 258268 (2014).
4. Luo Y., Huang Q., Li B., Dong L., Fan M., and Zhang F.: Synthesis and characterization of Cu2O–modified Bi2O3 nanospheres with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 357, 10721079 (2015).
5. Dong L., Shi H., Cheng K., Wang Q., Weng W., and Han W.: Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals. Nano Res. 7, 13111318 (2014).
6. Ma K., Yehezkeli O., Domaille D.W., Funke H.H., and Cha J.N.: Enhanced hydrogen production from DNA-assembled Z-scheme TiO2-CdS photocatalyst systems. Angew. Chem., Int. Ed. 54, 1149011494 (2015).
7. Ai K.L., Ruan C.P., Shen M.X., and Lu L.H.: MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems. Adv. Funct. Mater. 26, 55425549 (2016).
8. Negishi R., Naya S.i., and Tada H.: Visible light-driven selective aerobic oxidation of benzylalcohols to benzaldehydes by a Cu(acac)2-BiVO4-admicelle three-component heterosupramolecular photocatalyst. J. Phys. Chem. C 119, 1177111776 (2015).
9. Su Q., Sun J., Wang J., Yang Z., Cheng W., and Zhang S.: Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catal. Sci. Technol. 4, 1556 (2014).
10. Zhou Z., Wang J., Yu J., Shen Y., Li Y., Liu A., Liu S., and Zhang Y.: Dissolution and liquid crystals phase of 2D polymeric carbon nitride. J. Am. Chem. Soc. 137, 21792182 (2015).
11. Zhang Y., Liu J., Wu G., and Chen W.: Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 4, 53005303 (2012).
12. Li H.J., Sun B.W., Sui L., Qian D.J., and Chen M.: Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys. Chem. Chem. Phys. 17, 33093315 (2015).
13. Zhang M., Jiang W., Liu D., Wang J., Liu Y., Zhu Y., and Zhu Y.: Photodegradation of phenol via C3N4-agar hybrid hydrogel 3D photocatalysts with free separation. Appl. Catal., B 183, 263268 (2016).
14. Qin J., Huo J., Zhang P., Zeng J., Wang T., and Zeng H.: Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation. Nanoscale 8, 22492259 (2016).
15. Kuriki R., Ishitani O., and Maeda K.: Unique solvent effects on visible-light CO2 reduction over ruthenium(II)-complex/carbon nitride hybrid photocatalysts. ACS Appl. Mater. Interfaces 8, 60116018 (2016).
16. Ma T.Y., Ran J.R., Dai S., Jaroniec M., and Qiao S.Z.: Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes. Angew. Chem., Int. Ed. 54, 46464650 (2015).
17. She X., Wu J., Xu H., Zhong J., Wang Y., Song Y., Nie K., Liu Y., Yang Y., Rodrigues M.T.F., Vajtai R., Lou J., Du D., Li H., and Ajayan P.M.: High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts. Adv. Energy Mater. 7, 1700025 (2017).
18. Zhang G., Lan Z.A., Lin L., Lin S., and Wang X.: Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7, 30623066 (2016).
19. Gu Q., Liao Y., Yin L., Long J., Wang X., and Xue C.: Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability. Appl. Catal., B 165, 503510 (2015).
20. Yan S.C., Li Z.S., and Zou Z.G.: Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26, 38943901 (2010).
21. Ding Z., Chen X., Antonietti M., and Wang X.: Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation. ChemSusChem 4, 274281 (2011).
22. Yue B., Li Q., Iwai H., Kako T., and Ye J.: Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci. Technol. Adv. Mater. 12, 034401 (2011).
23. Hu S.Z., Ma L., Xie Y., Li F.Y., Fan Z.P., Wang F., Wang Q., Wang Y.J., Kang X.X., and Wu G.: Hydrothermal synthesis of oxygen functionalized S–P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions. Dalton Trans. 44, 2088920897 (2015).
24. Zhu Y.P., Ren T.Z., and Yuana Z.Y.: Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces 7, 1685016856 (2015).
25. Bu Y.Y. and Chen Z.Y.: Effect of oxygen-doped C3N4 on the separation capability of the photoinduced electron-hole pairs generated by O-C3N4@TiO2 with quasi–shell–core nanostructure. Electrochim. Acta 144, 4249 (2014).
26. Lu C.H., Chen R.Y., Wu X., Fan M.F., Liu Y.H., Le Z.G., Jiang S.J., and Song S.Q.: Boron doped g-C3N4 with enhanced photocatalytic UO2 2+ reduction performance. Appl. Surf. Sci. 360, 10161022 (2016).
27. Kong H.J., Won D.H., Kim J., and Woo S.I.: Sulfur-doped g-C3N4/BiVO4 composite photocatalyst for water oxidation under visible light. Chem. Mater. 28, 13181324 (2016).
28. Lan Z.A., Zhang G., and Wang X.: A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl. Catal., B 192, 116125 (2016).
29. Ma H.Q., Li Y., Li S., and Liu N.: Novel P–O codoped g-C3N4 with large specific surface area: Hydrothermal synthesis assisted by dissolution-precipitation process and their visible light activity under anoxic conditions. Appl. Surf. Sci. 357, 131138 (2015).
30. Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.M., Domen K., and Antonietti M.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 7680 (2009).
31. Gracia J. and Kroll P.: Corrugated layered heptazine-based carbon nitride: The lowest energy modifications of C3N4 ground state. J. Mater. Chem. 19, 30133019 (2009).
32. Ma X.G., Lv Y.H., Xu J., Liu Y.F., Zhang R.Q., and Zhu Y.F.: A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: A first-principles study. J. Phys. Chem. C 116, 2348523493 (2012).
33. Li H., Gan S., Wang H., Han D., and Niu L.: Intercorrelated superhybrid of AgBr supported on graphitic-C3N4-decorated nitrogen-doped graphene: High engineering photocatalytic activities for water purification and CO2 reduction. Adv. Mater. 27, 69066913 (2015).
34. Christoforidis K.C., Montini T., Bontempi E., Zafeiratos S., Delgado Jaen J.J., and Fornasiero P.: Synthesis and photocatalytic application of visible-light active beta-Fe2O3/g-C3N4 hybrid nanocomposites. Appl. Catal., B 187, 171180 (2016).
35. Zhang G., Zhang J., Zhang M., and Wang X.: Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 22, 80838091 (2012).
36. Lin Z.Z. and Wang X.C.: Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew. Chem., Int. Ed. 52, 17351738 (2013).
37. Xu T.G., Zhang L.W., Cheng H.Y., and Zhu Y.F.: Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal., B 101, 382387 (2011).
38. Hu S.W., Yang L.W., Tian Y., Wei X.L., Ding J.W., Zhong J.X., and Chu P.K.: Simultaneous nanostructure and heterojunction engineering of graphitic carbon nitride via in situ Ag doping for enhanced photoelectrochemical activity. Appl. Catal., B 163, 611622 (2015).
39. Ong W.J., Putri L.K., Tan L.L., Chai S.P., and Yong S.T.: Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl. Catal., B 180, 530543 (2016).
40. Lu M., Pei Z., Weng S., Feng W., Fang Z., Zheng Z., Huang M., and Liu P.: Constructing atomic layer g-C3N4-CdS nanoheterojunctions with efficiently enhanced visible light photocatalytic activity. Phys. Chem. Chem. Phys. 16, 2128021288 (2014).
41. Cui Y., Ding Z., Fu X., and Wang X.: Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. Angew. Chem., Int. Ed. 51, 1181411818 (2012).
42. Huang Z.a., Sun Q., Lv K., Zhang Z., Li M., and Li B.: Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (0 0 1) versus (1 0 1) facets of TiO2 . Appl. Catal., B 164, 420427 (2015).
43. Zhao L., Zhang L., Lin H., Nong Q., Cui M., Wu Y., and He Y.: Fabrication and characterization of hollow CdMoO4 coupled g-C3N4 heterojunction with enhanced photocatalytic activity. J. Hazard. Mater. 299, 333342 (2015).
44. Li C., Du Y., Wang D., Yin S., Tu W., Chen Z., Kraft M., Chen G., and Xu R.: Unique P–Co–N surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2 evolution. Adv. Funct. Mater. 27, 1304328 (2017).
45. Yan J., Wu H., Chen H., Zhang Y., Zhang F., and Liu S.F.: Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl. Catal., B 191, 130137 (2016).
46. Tian N., Zhang Y., Liu C., Yu S., Li M., and Huang H.: g-C3N4/Bi4O5I2 2D–2D heterojunctional nanosheets with enhanced visible-light photocatalytic activity. RSC Adv. 6, 1089510903 (2016).
47. Dai K., Lu L., Liang C., Zhu G., Liu Q., Geng L., and He J.: A high efficient graphitic-C3N4/BiOI/graphene oxide ternary nanocomposite heterostructured photocatalyst with graphene oxide as electron transport buffer material. Dalton Trans. 44, 79037910 (2015).
48. Wang Y., Di Y., Antonietti M., Li H., Chen X., and Wang X.: Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem. Mater. 22, 51195121 (2010).
49. Li J.H., Shen B.A., Hong Z.H., Lin B.Z., Gao B.F., and Chen Y.L.: A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 48, 1201712019 (2012).
50. Lan D.H., Wang H.T., Chen L., Au C.T., and Yin S.F.: Phosphorous-modified bulk graphitic carbon nitride: Facile preparation and application as an acid-base bifunctional and efficient catalyst for CO2 cycloaddition with epoxides. Carbon 100, 8189 (2016).
51. Cao Q., Che R., and Chen N.: Scalable synthesis of Cu2S double-superlattice nanoparticle systems with enhanced UV/visible-light-driven photocatalytic activity. Appl. Catal., B 162, 187195 (2015).
52. Liang J., Zhu G., Liu P., Luo X., Tan C., Jin L., and Zhou J.: Synthesis and characterization of Fe-doped β-Bi2O3 porous microspheres with enhanced visible light photocatalytic activity. Superlattices Microstruct. 72, 272282 (2014).
53. Ma J., Tan X., Jiang F., and Yu T.: Graphitic C3N4 nanosheet-sensitized brookite TiO2 to achieve photocatalytic hydrogen evolution under visible light. Catal. Sci. Technol. 7, 32753282 (2017).
54. Xing X., Liu R., Yu X., Zhang G., Cao H., Yao J., Ren B., Jiang Z., and Zhao H.: Self-assembly of CdS quantum dots with polyoxometalate encapsulated gold nanoparticles: Enhanced photocatalytic activities. J. Mater. Chem. A 1, 14881494 (2013).
55. Zou W.X., Zhang L., Liu L.C., Wang X.B., Sun J.F., Wu S.G., Deng Y., Tang C.J., Gao F., and Dong L.: Engineering the Cu2O-reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light. Appl. Catal., B 181, 495503 (2016).
56. Wang X., Maeda K., Chen X., Takanabe K., Domen K., Hou Y., Fu X., and Antonietti M.: Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 131, 16801681 (2009).
57. White A., Williams E., Porteous P., and Hilsum C.: Applications of photoluminescence excitation spectroscopy to the study of indium gallium phosphide alloys. J. Phys. D: Appl. Phys. 3, 13221328 (1970).
58. Yu W., Jiang K., Wu J., Gan J., Zhu M., Hu Z., and Chu J.: Electronic structures and excitonic transitions in nanocrystalline iron-doped tin dioxide diluted magnetic semiconductor films: An optical spectroscopic study. Phys. Chem. Chem. Phys. 13, 62116222 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 62 *
Loading metrics...

* Views captured on Cambridge Core between 8th January 2018 - 17th January 2018. This data will be updated every 24 hours.