Skip to main content Accessibility help

Novel pot-shaped carbon nanomaterial synthesized in a submarine-style substrate heating CVD method

  • Hiroyuki Yokoi (a1), Kazuto Hatakeyama (a1), Takaaki Taniguchi (a1), Michio Koinuma (a1), Masahiro Hara (a2) and Yasumichi Matsumoto (a2)...


We have developed a new synthesis method that includes a chemical vapor deposition process in a chamber settled in organic liquid, and applied its nonequilibrium reaction field to the development of novel carbon nanomaterials. In the synthesis at 1110–1120 K, using graphene oxide as a catalyst support, iron acetate and cobalt acetate as catalyst precursors, and 2-propanol as a carbon source as well as the organic liquid, we succeeded to create carbon nanofiber composed of novel pot-shaped units, named carbon nanopot. A carbon nanopot has a complex and regular nanostructure consisting of several parts made of different layer numbers of graphene and a deep hollow space. Dense graphene edges, hydroxylated presumably, are localized around its closed end. The typical size of a carbon nanopot was 20–40 nm in outer diameter, 5–30 nm in inner diameter, and 100–200 nm in length. A growth model of carbon nanopot and its applications are proposed.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Suarez-Martinez, I., Grobert, N., and Ewels, C.P.: Encyclopedia of carbon nanoforms. In Advances in Carbon Nanomaterials: Science and Applications, Tagmatarchis, N. ed.; Pan Stanford Publishing: Singapore, 2012; p. 1.
2. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162 (1985).
3. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).
4. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005).
5. Saito, Y. and Yoshikawa, T.: Bamboo-shaped carbon tube filled partially with nickel. J. Cryst. Growth 134, 154 (1993).
6. Endo, M., Kim, Y.A., Hayashi, T., Fukai, Y., Oshida, K., Terrones, M., Yanagisawa, T., Higaki, S., and Dresselhaus, M.S.: Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl. Phys. Lett. 80, 1267 (2002).
7. Ting, J-M. and Lan, J.B.C.: Beaded carbon tubes. Appl. Phys. Lett. 75, 3309 (1999).
8. Okuno, H., Grivei, E., Fabry, F., Gruenberger, T.M., Gonzalez-Aguilar, J., Palnichenko, A., Fulcheri, L., Probst, N., and Charlier, J-C.: Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process. Carbon 42, 2543 (2004).
9. Ma, X., Wang, E.G., Tilley, R.D., Jefferson, D.A., and Zhou, W.: Size-controlled short nanobells: Growth and formation mechanism. Appl. Phys. Lett. 77, 4136 (2000).
10. Zhang, M., Nakayama, Y., and Pan, L.: Synthesis of carbon tubule nanocoils in high yield using iron-coated indium tin oxide as catalyst. Jpn. J. Appl. Phys. 39, L1242 (2000).
11. Saito, Y., Inagaki, M., Shinohara, H., Nagashima, H., Ohkohchi, M., and Ando, Y.: Yield of fullerenes generated by contact arc method under He and Ar: Dependence on gas pressure. Chem. Phys. Lett. 200, 643 (1992).
12. Miyata, Y., Kamon, K., Ohashi, K., Kitaura, R., Yoshimura, M., and Shinohara, H.: A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling. Appl. Phys. Lett. 96, 263105 (2010).
13. Nakagawa, K., Nishitani-Gamo, M., Ogawa, K., and Ando, T.: Catalytic growth of carbon nanofilament in liquid hydrocarbon. Catal. Lett. 101, 191 (2005).
14. Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010).
15. Kamat, P.V.: Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 1, 520 (2010).
16. Zhang, L.L., Xiong, Z., and Zhao, X.S.: Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation. ACS Nano 4, 7030 (2010).
17. Mukhopadhyay, K., Koshio, A., Tanaka, N., and Shinohara, H.: A simple and novel way to synthesize aligned nanotube bundles at low temperature. Jpn. J. Appl. Phys. 37, L1257 (1998).
18. Zhao, Y., Tang, Y., Chen, Y., and Star, A.: Corking carbon nanotube cups with gold nanoparticles. ACS Nano 6, 6912 (2012).
19. Kumar, M.: Carbon nanotube synthesis and growth mechanism. In Carbon Nanotubes—Synthesis, Characterization, Applications, Yellampalli, S., ed. (Rijeka, Croatia: InTech, 2011); p. 147.
20. Davis, W.R., Slawson, R.J., and Rigby, G.R.: An unusual form of carbon. Nature 171, 756 (1953).
21. Baker, R.T.K. and Waite, R.J.: Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. J. Catal. 37, 101 (1975).
22. Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., and Waite, R.J.: Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26, 51 (1972).
23. Homma, Y., Kobayashi, Y., Ogino, T., Takagi, D., Ito, R., Jung, Y.J., and Ajayan, P.M.: Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J. Phys. Chem. B 107, 12161 (2003).
24. Baker, R.T.K., Harris, P.S., Thomas, R.B., and Waite, R.J.: Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 30, 86 (1973).
25. Tibbetts, G.G.: Why are carbon filaments tubular? J. Cryst. Growth 66, 632 (1984).
26. Baird, T., Fryer, J.R., and Grant, B.: Carbon formation on iron and nickel foils by hydrocarbon pyrolysis—reactions at 700 °C. Carbon 12, 591 (1974).
27. Oberlin, A., Endo, M., and Koyama, T.: Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32, 335 (1976).
28. Helveg, S., López-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup-Nielsen, J.R., Abild-Pedersen, F., and Nørskov, J.K.: Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426 (2004).
29. Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., Cantoro, M., Pisana, S., Parvez, A., Cervantes-Sodi, F., Ferrari, A.C., Dunin-Borkowski, R., Lizzit, S., Petaccia, L., Goldoni, A., and Robertson, J.: In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett. 7, 602 (2007).
30. Yoshida, H., Takeda, S., Uchiyama, T., Kohno, H., and Homma, Y.: Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 8, 2082 (2008).
31. Hummers, W.S. Jr. and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).
32. Mukhopadhyay, K., Koshio, A., Sugai, T., Tanaka, N., Shinohara, H., Konya, Z., and Nagy, J.B.: Bulk production of quasi-aligned carbon nanotube bundles by the catalytic chemical vapour deposition (CCVD) method. Chem. Phys. Lett. 303, 117 (1999).
33. Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., and Kohno, M.: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 360, 229 (2002).
34. Tuinstra, F. and Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970).
35. Cançado, L.G., Jorio, A., and Pimenta, M.A.: Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Phys. Rev. B 76, 064304 (2007).
36. Koinuma, M., Tateishi, H., Hatakeyama, K., Miyamoto, S., Ogata, C., Funatsu, A., Taniguchi, T., and Matsumoto, Y.: Analysis of reduced graphene oxides by X-ray photoelectron spectroscopy and electrochemical capacitance. Chem. Lett. 42, 924 (2013).
37. Lee, Y.T., Park, J., Choi, Y.S., Ryu, H., and Lee, H.J.: Temperature-dependent growth of vertically aligned carbon nanotubes in the range 800–1100 °C. J. Phys. Chem. B 106, 7614 (2002).
38. Liu, G-J., Fan, L-Q., Yu, F-D., Wu, J-H., Liu, L., Qiu, Z-Y., and Liu, Q.: Facile one-step hydrothermal synthesis of reduced graphene oxide/Co3O4 composites for supercapacitors. J. Mater. Sci. 48, 8463 (2013).
39. Kim, M.S., Rodriguez, N.M., and Baker, R.T.K.: The interplay between sulfur adsorption and carbon deposition on cobalt catalysts. J. Catal. 143, 449 (1993).
40. Tibbetts, G.G., Bernardo, C.A., Gorkiewicz, D.W., and Alig, R.L.: Role of sulfur in the production of carbon fibers in the vapor phase. Carbon 32, 569 (1994).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed