1.
Suarez-Martinez, I., Grobert, N., and Ewels, C.P.: Encyclopedia of carbon nanoforms. In Advances in Carbon Nanomaterials: Science and Applications, Tagmatarchis, N. ed.; Pan Stanford Publishing: Singapore, 2012; p. 1.
2.
Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E.: C60: Buckminsterfullerene. Nature
318, 162 (1985).
3.
Iijima, S.: Helical microtubules of graphitic carbon. Nature
354, 56 (1991).
4.
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature
438, 197 (2005).
5.
Saito, Y. and Yoshikawa, T.: Bamboo-shaped carbon tube filled partially with nickel. J. Cryst. Growth
134, 154 (1993).
6.
Endo, M., Kim, Y.A., Hayashi, T., Fukai, Y., Oshida, K., Terrones, M., Yanagisawa, T., Higaki, S., and Dresselhaus, M.S.: Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl. Phys. Lett.
80, 1267 (2002).
7.
Ting, J-M. and Lan, J.B.C.: Beaded carbon tubes. Appl. Phys. Lett.
75, 3309 (1999).
8.
Okuno, H., Grivei, E., Fabry, F., Gruenberger, T.M., Gonzalez-Aguilar, J., Palnichenko, A., Fulcheri, L., Probst, N., and Charlier, J-C.: Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process. Carbon
42, 2543 (2004).
9.
Ma, X., Wang, E.G., Tilley, R.D., Jefferson, D.A., and Zhou, W.: Size-controlled short nanobells: Growth and formation mechanism. Appl. Phys. Lett.
77, 4136 (2000).
10.
Zhang, M., Nakayama, Y., and Pan, L.: Synthesis of carbon tubule nanocoils in high yield using iron-coated indium tin oxide as catalyst. Jpn. J. Appl. Phys.
39, L1242 (2000).
11.
Saito, Y., Inagaki, M., Shinohara, H., Nagashima, H., Ohkohchi, M., and Ando, Y.: Yield of fullerenes generated by contact arc method under He and Ar: Dependence on gas pressure. Chem. Phys. Lett.
200, 643 (1992).
12.
Miyata, Y., Kamon, K., Ohashi, K., Kitaura, R., Yoshimura, M., and Shinohara, H.: A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling. Appl. Phys. Lett.
96, 263105 (2010).
13.
Nakagawa, K., Nishitani-Gamo, M., Ogawa, K., and Ando, T.: Catalytic growth of carbon nanofilament in liquid hydrocarbon. Catal. Lett.
101, 191 (2005).
14.
Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev.
39, 228 (2010).
15.
Kamat, P.V.: Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett.
1, 520 (2010).
16.
Zhang, L.L., Xiong, Z., and Zhao, X.S.: Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation. ACS Nano
4, 7030 (2010).
17.
Mukhopadhyay, K., Koshio, A., Tanaka, N., and Shinohara, H.: A simple and novel way to synthesize aligned nanotube bundles at low temperature. Jpn. J. Appl. Phys.
37, L1257 (1998).
18.
Zhao, Y., Tang, Y., Chen, Y., and Star, A.: Corking carbon nanotube cups with gold nanoparticles. ACS Nano
6, 6912 (2012).
19.
Kumar, M.: Carbon nanotube synthesis and growth mechanism. In Carbon Nanotubes—Synthesis, Characterization, Applications, Yellampalli, S., ed. (Rijeka, Croatia: InTech, 2011); p. 147.
20.
Davis, W.R., Slawson, R.J., and Rigby, G.R.: An unusual form of carbon. Nature
171, 756 (1953).
21.
Baker, R.T.K. and Waite, R.J.: Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. J. Catal.
37, 101 (1975).
22.
Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., and Waite, R.J.: Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal.
26, 51 (1972).
23.
Homma, Y., Kobayashi, Y., Ogino, T., Takagi, D., Ito, R., Jung, Y.J., and Ajayan, P.M.: Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J. Phys. Chem. B
107, 12161 (2003).
24.
Baker, R.T.K., Harris, P.S., Thomas, R.B., and Waite, R.J.: Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal.
30, 86 (1973).
25.
Tibbetts, G.G.: Why are carbon filaments tubular?
J. Cryst. Growth
66, 632 (1984).
26.
Baird, T., Fryer, J.R., and Grant, B.: Carbon formation on iron and nickel foils by hydrocarbon pyrolysis—reactions at 700 °C. Carbon
12, 591 (1974).
27.
Oberlin, A., Endo, M., and Koyama, T.: Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth
32, 335 (1976).
28.
Helveg, S., López-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup-Nielsen, J.R., Abild-Pedersen, F., and Nørskov, J.K.: Atomic-scale imaging of carbon nanofibre growth. Nature
427, 426 (2004).
29.
Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., Cantoro, M., Pisana, S., Parvez, A., Cervantes-Sodi, F., Ferrari, A.C., Dunin-Borkowski, R., Lizzit, S., Petaccia, L., Goldoni, A., and Robertson, J.: In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett.
7, 602 (2007).
30.
Yoshida, H., Takeda, S., Uchiyama, T., Kohno, H., and Homma, Y.: Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett.
8, 2082 (2008).
31.
Hummers, W.S. Jr. and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc.
80, 1339 (1958).
32.
Mukhopadhyay, K., Koshio, A., Sugai, T., Tanaka, N., Shinohara, H., Konya, Z., and Nagy, J.B.: Bulk production of quasi-aligned carbon nanotube bundles by the catalytic chemical vapour deposition (CCVD) method. Chem. Phys. Lett.
303, 117 (1999).
33.
Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., and Kohno, M.: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett.
360, 229 (2002).
34.
Tuinstra, F. and Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys.
53, 1126 (1970).
35.
Cançado, L.G., Jorio, A., and Pimenta, M.A.: Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Phys. Rev. B
76, 064304 (2007).
36.
Koinuma, M., Tateishi, H., Hatakeyama, K., Miyamoto, S., Ogata, C., Funatsu, A., Taniguchi, T., and Matsumoto, Y.: Analysis of reduced graphene oxides by X-ray photoelectron spectroscopy and electrochemical capacitance. Chem. Lett.
42, 924 (2013).
37.
Lee, Y.T., Park, J., Choi, Y.S., Ryu, H., and Lee, H.J.: Temperature-dependent growth of vertically aligned carbon nanotubes in the range 800–1100 °C. J. Phys. Chem. B
106, 7614 (2002).
38.
Liu, G-J., Fan, L-Q., Yu, F-D., Wu, J-H., Liu, L., Qiu, Z-Y., and Liu, Q.: Facile one-step hydrothermal synthesis of reduced graphene oxide/Co3O4 composites for supercapacitors. J. Mater. Sci.
48, 8463 (2013).
39.
Kim, M.S., Rodriguez, N.M., and Baker, R.T.K.: The interplay between sulfur adsorption and carbon deposition on cobalt catalysts. J. Catal.
143, 449 (1993).
40.
Tibbetts, G.G., Bernardo, C.A., Gorkiewicz, D.W., and Alig, R.L.: Role of sulfur in the production of carbon fibers in the vapor phase. Carbon
32, 569 (1994).