Skip to main content

On the effect of precipitates on the cyclic deformation behavior of an Al–Mg–Si alloy

  • Haichun Jiang (a1), Stefanie Sandlöbes (a1), Günter Gottstein (a1) and Sandra Korte-Kerzel (a1)

Fatigue is one of the major failure modes of structural materials. While the effects of strengthening precipitates on the mechanical properties of heat treatable aluminum alloys during forming operations are well-studied, only little is known about the related mechanisms during fatigue. We study the influence of precipitates during low cycle fatigue of an Al–Si–Mg alloy by mechanical testing and microstructure characterisation using (scanning) transmission electron microscopy. Specifically, we have investigated under-aged, peak-aged, and over-aged precipitation states. The experiments reveal considerable influence of the precipitate state on the mechanical properties and the formed dislocation structures. Under-aged AA6016 experiences cyclic hardening accompanied by dynamic precipitation and precipitate growth during cyclic deformation, whereas peak-aged AA6016 shows a saturated cyclic stress behavior and the formation of a ‘prevein’-like dislocation structure aligned along [001]Al directions. Over-aged AA6016 exhibits cyclic softening, which is assumed to be due to frequent Orowan-looping of dislocations around incoherent precipitates.

Corresponding author
a) Address all correspondence to these authors. e-mail:
b) e-mail:
Hide All

Contributing Editor: Mathias Göken

Hide All
1. Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., De Smet, P., Haszler, A., and Vieregge, A.: Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng., A 280, 37 (2000).
2. Edwards, G.A., Stiller, K., Dunlop, G.L., and Couper, M.J.: The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 46, 3893 (1998).
3. Marioara, C.D., Andersen, S.J., Jansen, J., and Zandbergen, H.W.: The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy. Acta Mater. 51, 789 (2003).
4. Mughrabi, H.: Fatigue, an everlasting materials problem-still en vogue. Procedia Eng. 2, 3 (2010).
5. Campbell, F.C.: Elements of Metallurgy and Engineering Alloys (ASM International, Materials Park, Ohio, 2008).
6. Hutchinson, C.R., De Geuser, F., Chen, Y., and Deschamps, A.: Quantitative measurements of dynamic precipitation during fatigue of an Al–Zn–Mg–(Cu) alloy using small-angle X-ray scattering. Acta Mater. 74, 96 (2014).
7. Nandy, S., Sekhar, A.P., Kar, T., Ray, K.K., and Das, D.: Influence of ageing on the low cycle fatigue behaviour of an Al–Mg–Si alloy. Philos. Mag. 97, 1 (2017).
8. Tsao, C.S., Chen, C.Y., Jeng, U.S., and Kuo, T.Y.: Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys. Acta Mater. 54, 4621 (2006).
9. Yang, W., Huang, L., Zhang, R., Wang, M., Li, Z., Jia, Y., Lei, R., and Sheng, X.: Electron microscopy studies of the age-hardening behaviors in 6005A alloy and microstructural characterizations of precipitates. J. Alloys Compd. 514, 220 (2012).
10. Torsæter, M., Hasting, H.S., Lefebvre, W., Marioara, C.D., Walmsley, J.C., Andersen, S.J., and Holmestad, R.: The influence of composition and natural aging on clustering during preaging in Al–Mg–Si alloys. J. Appl. Phys. 108, 073527 (2010).
11. De Geuser, F., Lefebvre, W., and Blavette, D.: 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al–Mg–Si alloy. Philos. Mag. Lett. 86, 227 (2006).
12. Bryant, J.D.: The effects of preaging treatments on aging kinetics and mechanical properties in AA6111 aluminum autobody sheet. Metall. Mater. Trans. A 30 (1999).
13. Pogatscher, S., Antrekowitsch, H., Werinos, M., Moszner, F., Gerstl, S.S.A., Francis, M.F., Curtin, W.A., Löffler, J.F., and Uggowitzer, P.J.: Diffusion on demand to control precipitation aging: Application to Al–Mg–Si alloys. Phys. Rev. Lett. 112, 225701 (2014).
14. Guinier, A.: Structure of age-hardened aluminium–copper alloys. Nature 142, 569 (1938).
15. Preston, G.D.: Structure of age-hardened aluminium–copper alloys. Nature 142, 570 (1938).
16. Matsuda, K., Naoi, T., Fujii, K., Uetani, Y., Sato, T., Kamio, A., and Ikeno, S.: Crystal structure of the β″ phase in an Al–1.0 mass% Mg2Si–0.4 mass% Si alloy. Mater. Sci. Eng., A 262, 232 (1999).
17. Andersen, S.J., Marioara, C.D., Torsæter, M., Bjørge, R., Ehlers, F.J.H., Holmestad, R., Reiso, O., and Røyset, J.: Behind structure and relation of precipitates in Al–Mg–Si and related alloys: In Proceeding Proceedings of the 12th International Conference on Aluminium Alloys, edited by Kumai, S., Umezawa, O., Takayama, Y., Tsuchida, T., and Sato, T.. (Yokohama, Japan); p. 413.
18. Lynch, J.P., Brown, L.M., and Jacobs, M.H.: Microanalysis of age-hardening precipitates in aluminium alloys. Acta Metall. 30, 1389 (1982).
19. Jacobs, M.: The structure of the metastable precipitates formed during ageing of an Al–Mg–Si alloy. Philos. Mag. 26, 1 (1972).
20. Marioara, C.D., Nordmark, H., Andersen, S.J., and Holmestad, R.: Post-β″ phases and their influence on microstructure and hardness in 6xxx Al–Mg–Si alloys. J. Mater. Sci. 41, 471 (2006).
21. Vorren, O. and Ryum, N.: Cyclic deformation of Al-single crystals at low constant plastic strain amplitudes. Acta Metall. 35, 855 (1987).
22. Videm, M. and Ryum, N.: Cyclic deformation of [001] aluminium single crystals. Mater. Sci. Eng., A 219, 1 (1996).
23. Fujii, T., Sawatari, N., Onaka, S., and Kato, M.: Cyclic deformation of pure aluminum single crystals with double-slip orientations. Mater. Sci. Eng., A 387, 486 (2004).
24. Li, P., Li, S., Wang, Z., and Zhang, Z.: Cyclic deformation behaviors of $\left[ {\bar 579} \right]$ -oriented Al single crystals. Metall. Mater. Trans. A 41, 2532 (2010).
25. Wang, J., Zhu, Z.G., Fang, Q.F., and Liu, G.D.: The influence of the crystallographic orientation on the behavior of fatigue in Al single crystals. Mater. Res. Bull. 34, 407 (1999).
26. Vorren, O. and Ryum, N.: Cyclic deformation of Al single crystals: Effect of the crystallographic orientation. Acta Metall. 36, 1443 (1988).
27. Xia, Y.B.: The effect of crystal orientation on mechanical behavior during fatigue in aluminium single crystals. Scr. Metall. 29, 999 (1993).
28. Giese, A. and Estrin, Y.: Mechanical behaviour and microstructure of fatigued aluminium single crystals. Scr. Metall. 28, 803 (1993).
29. Zhai, T., Martin, J.W., and Briggs, G.A.D.: Fatigue damage at room temperature in aluminium single crystals—II. TEM. Acta Mater. 44, 1729 (1996).
30. Nellessen, J., Sandlöbes, S., and Raabe, D.: Low cycle fatigue in aluminum single and bi-crystals: On the influence of crystal orientation. Mater. Sci. Eng., A 668, 166 (2016).
31. Zhai, T., Martin, J.W., Briggs, G.A.D., and Wilkinson, A.J.: Fatigue damage at room temperature in aluminium single crystals—III. Lattice rotation. Acta Mater. 44, 3477 (1996).
32. Zhai, T., Martin, J.W., and Briggs, G.A.D.: Fatigue damage in aluminum single crystals—I. On the surface containing the slip burgers vector. Acta Metall. 43, 3813 (1995).
33. Chandler, H.D. and Bee, J.V.: Cyclic strain induced precipitation in a solution treated aluminium alloy. Acta Metall. 35, 2503 (1987).
34. Srivatsan, T.S., Sriram, S., and Daniels, C.: Influence of temperature on cyclic stress response and fracture behavior of aluminum alloy 6061. Eng. Fract. Mech. 56, 531 (1997).
35. Lee, D.H., Park, J.H., and Nam, S.W.: Enhancement of mechanical properties of Al–Mg–Si alloys by means of manganese dispersoids. Mater. Sci. Technol. 15, 450 (1999).
36. Lam, P.C., Srivatsan, T.S., Hotton, B., and Al-Hajri, M.: Cyclic stress response characteristics of an aluminum–magnesium–silicon alloy. Mater. Lett. 45, 186 (2000).
37. Borrego, L.P., Abreu, L.M., Costa, J.M., and Ferreira, J.M.: Analysis of low cycle fatigue in AlMgSi aluminium alloys. Eng. Failure Anal. 11, 715 (2004).
38. Yahya, M.M., Mallik, N., and Chakrabarty, I.: Low cycle fatigue (LCF) behavior of AA6063 aluminium alloy at room temperature. Int. J. Emerging Adv. Res. Technol. 5, 100 (2015).
39. Azzam, D., Menzemer, C.C., and Srivatsan, T.S.: The fracture behavior of an Al–Mg–Si alloy during cyclic fatigue. Mater. Sci. Eng., A 527, 5341 (2010).
40. Ding, X-q., He, G-q., and Chen, C-s.: Study on the dislocation sub-structures of Al–Mg–Si alloys fatigued under non-proportional loadings. J. Mater. Sci. 45, 4046 (2010).
41. Takahashi, Y., Shikama, T., Yoshihara, S., Aiura, T., and Noguchi, H.: Study on dominant mechanism of high-cycle fatigue life in 6061-T6 aluminum alloy through microanalyses of microstructurally small cracks. Acta Mater. 60, 2554 (2012).
42. Nandy, S., Sekhar, A.P., Das, D., Hossain, S.J., and Ray, K.K.: Influence of dynamic precipitation during low cycle fatigue of under-aged AA6063 alloy. Trans. Indian Inst. Met. 69, 319 (2016).
43. Laird, C., Langelo, V.J., Hollrah, M., Yang, N.C., and De La Veaux, R.: The cyclic stress–strain response of precipitation hardened Al–15 wt% Ag alloy. Mater. Sci. Eng. 32, 137 (1978).
44. Pahl, R.G. and Cohen, J.B.: Effects of fatigue on the GP zones in Al–Zn alloys. Metall. Mater. Trans. A 15, 1519 (1984).
45. Farrow, A. and Laird, C.: Precipitation in solution-treated aluminium–4 wt% copper under cyclic strain. Philos. Mag. 90, 3549 (2010).
46. Han, W.Z., Chen, Y., Vinogradov, A., and Hutchinson, C.R.: Dynamic precipitation during cyclic deformation of an underaged Al–Cu alloy. Mater. Sci. Eng., A 528, 7410 (2011).
47. Hörnqvist, M. and Karlsson, B.: Dynamic strain ageing and dynamic precipitation in AA7030 during cyclic deformation. Procedia Eng. 2, 265 (2010).
48. Williams, D.B. and Carter, C.B.: The Transmission Electron Microscope (Springer US, New York, 1996).
49. Gottstein, G.: Physical Foundations of Materials Science (Springer Science & Business Media, New York, 2013).
50. Dieter, G.E. and Bacon, D.J.: Mechanical Metallurgy (McGraw-Hill, New York, 1986).
51. Deschamps, A., Livet, F., and Brechet, Y.: Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties. Acta Mater. 47, 281 (1998).
52. Deschamps, A. and Brechet, Y.: Influence of predeformation and ageing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress. Acta Mater. 47, 293 (1998).
53. Shercliff, H.R. and Ashby, M.F.: A process model for age hardening of aluminium alloys—I. The model. Acta Metall. 38, 1789 (1990).
54. Shercliff, H.R. and Ashby, M.F.: A process model for age hardening of aluminium alloys—II. Applications of the model. Acta Metall. 38, 1803 (1990).
55. Esmaeili, S. and Lloyd, D.J.: Modeling of precipitation hardening in pre-aged AlMgSi (Cu) alloys. Acta Mater. 53, 5257 (2005).
56. Simar, A., Brechet, Y., De Meester, B., Denquin, A., and Pardoen, T.: Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6. Acta Mater. 55, 6133 (2007).
57. Myhr, O., Grong, Ø., and Andersen, S.: Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Mater. 49, 65 (2001).
58. Myhr, O.R., Grong, Ø., Fjaer, H.G., and Marioara, C.D.: Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing. Acta Mater. 52, 4997 (2004).
59. Esmaeili, S., Lloyd, D.J., and Poole, W.J.: Modeling of precipitation hardening for the naturally aged Al–Mg–Si–Cu alloy AA6111. Acta Mater. 51, 3467 (2003).
60. Mao, F.X., Bollmann, C., Brüggemann, T., Liang, Z.Q., Jiang, H.C., and Mohles, V.: Modelling of the age-hardening behavior in AA6xxx within a through-process modelling framework: In 15th International Conference on Aluminum Alloys, edited by Liu, Q., Nie, J.-F., Sanders, R., Jia, Z., and Cao, L.. (Chongqing, China); p. 640.
61. Delmas, F., Casanove, M.J., Lours, P., Couret, A., and Coujou, A.: Quantitative TEM study of the precipitation microstructure in aluminium alloy Al (MgSiCu) 6056 T6. Mater. Sci. Eng., A 373, 80 (2004).
62. Fribourg, G., Bréchet, Y., Deschamps, A., and Simar, A.: Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy. Acta Mater. 59, 3621 (2011).
63. Estrin, Y. and Lücke, K.: Void nucleation in the wake of a moving grain boundary. Scr. Metall. 19, 221 (1985).
64. Deschamps, A., Brechet, Y., Necker, C.J., Saimoto, S., and Embury, J.D.: Study of large strain deformation of dilute solid solutions of Al–Cu using channel-die compression. Mater. Sci. Eng., A 207, 143 (1996).
65. Deschamps, A., Niewczas, M., Bley, F., Brechet, Y., Embury, J.D., Sinq, L.L., Livet, F., and Simon, J.P.: Low-temperature dynamic precipitation in a supersaturated AI–Zn–Mg alloy and related strain hardening. Philos. Mag. A 79, 2485 (1999).
66. Waldron, G.W.J.: A study by transmission electron microscopy of the tensile and fatigue deformation of aluminum–magnesium alloys. Acta Metall. 13, 897 (1965).
67. Mughrabi, H.: Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. B 40, 431 (2009).
68. Harvey, S.E., Marsh, P.G., and Gerberich, W.W.: Atomic force microscopy and modeling of fatigue crack initiation in metals. Acta Metall. 42, 3493 (1994).
69. Gerberich, W.W., Harvey, S.E., Kramer, D.E., and Hoehn, J.W.: Low and high cycle fatigue—A continuum supported by AFM observations. Acta Mater. 46, 5007 (1998).
70. Cretegny, L. and Saxena, A.: AFM characterization of the evolution of surface deformation during fatigue in polycrystalline copper. Acta Mater. 49, 3755 (2001).
71. Shyam, A. and Milligan, W.W.: A model for slip irreversibility, and its effect on the fatigue crack propagation threshold in a nickel-base superalloy. Acta Mater. 53, 835 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 45
Total number of PDF views: 85 *
Loading metrics...

Abstract views

Total abstract views: 211 *
Loading metrics...

* Views captured on Cambridge Core between 11th September 2017 - 19th March 2018. This data will be updated every 24 hours.