Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-28T03:00:34.424Z Has data issue: false hasContentIssue false

On the elastic effects in power-law indentation creep with sharp conical indenters

Published online by Cambridge University Press:  31 January 2011

Jon Alkorta*
Affiliation:
Centro de Estudios e Investigaciones Técnicas de Gipuzkoa (CEIT) and Technological Campus of the University of Navarra (TECNUN), 20018 San Sebastián, Spain
José Manuel Martínez-Esnaola
Affiliation:
Centro de Estudios e Investigaciones Técnicas de Gipuzkoa (CEIT) and Technological Campus of the University of Navarra (TECNUN), 20018 San Sebastián, Spain
Javier Gil Sevillano
Affiliation:
Centro de Estudios e Investigaciones Técnicas de Gipuzkoa (CEIT) and Technological Campus of the University of Navarra (TECNUN), 20018 San Sebastián, Spain
*
a)Address all correspondence to this author. e-mail: jalkorta@ceit.es
Get access

Abstract

The elastic deformation contribution can significantly affect the measurement of the strain-rate sensitivity (SRS) of the plastic flow stress by indentation methods. In this paper, the effect of such elastic contribution is critically analyzed using an extension of a previous treatment developed by the authors for the elastic effects on the indentation of strain-hardening materials [J. Alkorta et al., J. Mater. Res.20, 432 (2005)]. The analytical model is calibrated and validated through finite element calculations. The results show that when the elastic contribution to the total deformation is not negligible then the measured SRS is significantly lower than the real one. A satisfactory correction factor for the apparent SRS exponent is proposed based on parameters directly accessible to instrumented indentation test results.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nabarro, F.R.N.: Creep in commercially pure metals. Acta Mater. 54, 263 2006CrossRefGoogle Scholar
2Davis, C.D.Hunter, S.C.: Assessment of the strain-rate sensitivity of metals by indentation with conical indenters. J. Mech. Phys. Solids 8, 235 1960CrossRefGoogle Scholar
3Atkins, A.G., Silverio, A.Tabor, D.: Indentation hardness and creep of solids. J. Inst. Met. 94, 369 1966Google Scholar
4Mulhearn, T.O.Tabor, D.: Creep and hardness of metals—A physical study. J. Inst. Met. 89, 7 1960Google Scholar
5Roebuck, B.Almond, E.A.: Equivalence of indentation and compressive creep tests on a Wc Co hardmetal. J. Mater. Sci. Lett. 1, 519 1982CrossRefGoogle Scholar
6Sargent, P.M.Ashby, M.F.: Indentation creep. Mater. Sci. Tech. Ser. 8, 594 1992Google Scholar
7Li, W.B., Henshall, J.L., Hooper, R.M.Easterling, K.E.: The mechanisms of indentation creep. Acta Metall. Mater. 39, 3099 1991CrossRefGoogle Scholar
8Bower, A.F., Fleck, N.A., Needleman, A.Ogbonna, N.: Indentation of a power law creeping solid. Proc. R. Soc. (London) A Mater. 441, 97 1993Google Scholar
9Storakers, B.Larsson, P-L.: On Brinell and Boussinesq indentation of creeping solids. J. Mech. Phys. Solids 42, 307 1994CrossRefGoogle Scholar
10Cheng, Y.T.Cheng, C.M.: Scaling relationships in indentation of power-law creep solids using self-similar indenters. Philos. Mag. Lett. 81, 9 2001CrossRefGoogle Scholar
11 ISO-14577 (2002)Google Scholar
12Poisl, W.H., Oliver, W.C.Fabes, B.D.: The relationship between indentation and uniaxial creep in amorphous selenium. J. Mater. Res. 10, 2024 1995CrossRefGoogle Scholar
13Fujiwara, M.Otsuka, M.: Indentation creep of beta-Sn and Sn–Pb eutectic alloy. Mater. Sci. Eng., A 319, 929 2001CrossRefGoogle Scholar
14Li, H.Ngan, A.H.W.: Size effects of nanoindentation creep. J. Mater. Res. 19, 513 2004CrossRefGoogle Scholar
15Li, H.Ngan, A.H.W.: Indentation size effects on the strain rate sensitivity of nanocrystalline Ni–25at.%Al thin films. Scripta Mater. 52, 827 2005CrossRefGoogle Scholar
16Bhakhri, V.Klassen, R.J.: Investigation of high-temperature plastic deformation using instrumented microindentation tests. Part I. The deformation of three aluminum alloys at 473 K to 833 K. J. Mater. Sci. 41, 2259 2006CrossRefGoogle Scholar
17Chang, S-Y., Lee, Y-S.Chang, T-K.: Nanomechanical response and creep behavior of electroless deposited copper films under nanoindentation test. Mater. Sci. Eng., A 423, 52 2006CrossRefGoogle Scholar
18Goodall, R.Clyne, T.W.: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54, 5489 2006CrossRefGoogle Scholar
19Mayo, M.J.Nix, W.D.: A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 Wt-percent-Pb. Acta Metall. 36, 2183 1988CrossRefGoogle Scholar
20Schwaiger, R., Moser, B., Dao, M., Chollacoop, N.Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 2003CrossRefGoogle Scholar
21Lucas, B.N., Oliver, W.C., Pharr, G.M.Loubet, J.L.: Time dependent deformation during indentation testing in Thin Films: Stresses and Mechanical Properties VI, edited by W.W. Gerberich, H. Gao, J.E. Sundgren, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 233.CrossRefGoogle Scholar
22Lucas, B.N.Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601 1999CrossRefGoogle Scholar
23Alkorta, J.Sevillano, J. Gil: Measuring the strain rate sensitivity by instrumented indentation. Application to an ultrafine grain (equal channel angular-pressed) eutectic Sn–Bi alloy. J. Mater. Res. 19, 282 2004CrossRefGoogle Scholar
24Alkorta, J., Martinez-Esnaola, J.M.Sevillano, J. Gil: Critical examination of strain rate sensitivity measurement by nanoindentation methods. Application to severely deformed niobium. Acta Mater. 2007 DOI: 10.1016/j.actamat.2007.10.039Google Scholar
25Elmustafa, A.A., Kose, S.Stone, D.S.: The strain-rate sensitivity of the hardness in indentation creep. J. Mater. Res. 22, 926 2007CrossRefGoogle Scholar
26Oliver, W.C.Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992CrossRefGoogle Scholar
27Alkorta, J., Martinez-Esnaola, J.M.Sevillano, J. Gil: Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load-penetration data. J. Mater. Res. 20, 432 2005CrossRefGoogle Scholar
28Alkorta, J., Martinez-Esnaola, J.M.Sevillano, J.G.: Comments on: “Comment on the determination of mechanical properties from the energy dissipated during indentation,” by J. Malzbender, J. Mater. Res. 20, 1090 2005. J. Mater. Res. 21, 302 2006CrossRefGoogle Scholar
29Alkorta, J.: Nanocrystalline materials produced by SPD and their mechanical characterization by means of novel nanoindentation methods. Ph.D. Thesis, TECNUN (University of Navarra), San Sebastian,2006Google Scholar
30Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 1965CrossRefGoogle Scholar
31Hay, J.C., Bolshakov, A.Pharr, G.M.: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 1999CrossRefGoogle Scholar
32Fujisawa, N.Swain, M.V.: On the indentation contact area of a creeping solid during constant-strain-rate loading by a sharp indenter. J. Mater. Res. 22, 893 2007CrossRefGoogle Scholar
33Brodova, I.G., Bashlykov, D.V., Manukhin, A.B., Stolyarov, V.V.Soshnikova, E.P.: Formation of nanostructure in rapidly solidified Al–Zr alloy by severe plastic deformation. Scripta Mater. 44, 1761 2001CrossRefGoogle Scholar
34Storakers, B., Biwa, S.Larsson, P.L.: Similarity analysis of inelastic contact. Int. J. Solids Struct. 34, 3061 1997CrossRefGoogle Scholar
35Cao, Y.P., Dao, M.Lu, J.: A precise correcting method for the study of the superhard material using nanoindentation tests. J. Mater. Res. 22, 1255 2007CrossRefGoogle Scholar