Skip to main content
    • Aa
    • Aa

The optical properties of Cu-Ni nanoparticles produced via pulsed laser dewetting of ultrathin films: The effect of nanoparticle size and composition on the plasmon response

  • Y. Wu (a1), J.D. Fowlkes (a2) and P.D. Rack (a3)

Thin film Cu-Ni alloys ranging from 2–8 nm were synthesized and their optical properties were measured as-deposited and after a laser treatment which dewet the films into arrays of spatially correlated nanoparticles. The resultant nanoparticle size and spacing are attributed to a laser induced spinodal dewetting process. The evolution of the spinodal dewetting process is investigated as a function of the thin film composition which ultimately dictates the size distribution and spacing of the nanoparticles. The optical measurements of the copper rich alloy nanoparticles reveal a signature absorption peak suggestive of a plasmon peak that red-shifts with increasing nanoparticle size and blue-shifts and dampens with increasing nickel concentration.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Becker J., Grun G., Seemann R., Mantz H., Jacobs K., Mecke K.R., and Blosseya R.: Complex dewetting scenarios captured by thin-film models. Nat. Mater. 2, 59 (2003).
2.Bischof J., Scherer D., Herminghaus S., and Leiderer P.: Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting. Phys. Rev. Lett. 77, 8 (1996).
3.Henley S.J., Carey J.D., and Silva S.R.P.: Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films. Phys. Rev. B 72, 195408 (2005).
4.Trice J., Thomas D., Favazza C., Sureshkumar R., and Kalyanaraman R.: Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments. Phys. Rev. B 75, 235439 (2007).
5.Trice J., Favazza C., Thomas D., Garcia H., Kalyanaraman R., and Sureshkumar R.: Novel self-organization mechanism in ultrathin liquid films: Theory and experiment. Phys. Rev. Lett. 101, (2008) 017802.
6.Favazza C., Kalyanaraman R., and Sureshkumar R.: Robust nanopatterning by laser-induced dewetting of metal nanofilms. Nanotechnology 17, 4229 (2006).
7.Krishna H., Shirato N., Favazza C., and Kalyanaraman R.: Energy driven self-organization in nanoscale metallic liquid films. Phys. Chem. Chem. Phys. 11, 8136 (2009).
8.Krishna H., Sachan R., Strader J., Favazza C., Khenner M., and Kalyanaraman R.: Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnology 21, 155601 (2010).
9.Gedvilas M., Raciukaitis G., and Regelskis K.: Self-organization in a chromium thin film under laser irradiation. Appl. Phys. A 93, 203 (2008).
10.Yasuhiko K. and Takahisa K.: Nanoparticle formation in Au thin films by electron-beam-induced dewetting. Nanotechnology 19, 255605 (2008).
11.Rack P.D., Guan Y.F., Fowlkes J.D., Melechko A.V., and Simpson M.L.: Pulsed laser dewetting of patterned thin metal films: A means of directed assembly. Appl. Phys. Lett. 92, 223108 (2008).
12.Fowlkes J.D., Wu Y., and Rack P.D.: Directed assembly of bimetallic nanoparticles by pulsed-laser-induced dewetting: A unique nanoscale time and length scale regime. ACS Appl. Mater. Interfaces 2, 7 (2010).
13.Kondic L., Diez J., Rack P.D., Guan Y., and Fowlkes J.D.: Nanoparticle assembly via the dewetting of patterned thin metal lines: Understanding the instability mechanisms. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 79, 026302 (2009).
14.Wu Y., Fowlkes J.D., Rack P.D., Kondic L., and Diez J.: On the breakup of patterned nanoscale copper rings into nanoparticles: Competing instability and transport mechanisms. Langmuir 26(14), 11972 (2010).
15.Lin C., Jiang L., Zhou J., Xiao H., Chen S., and Tsai H.: Laser-treated substrate with nanoparticles for surface-enhanced Raman scattering. Opt. Lett. 35, 7 (2010).
16.Krishna H., Favazza C., Gangopadhyay A.K., and Kalyanaraman R.: Functional nanostructures through nanosecond laser dewetting of thin metal films. JOM 60, 9 (2008).
17.Klein K.L., Melechko A.V., Rack P.D., Fowlkes J.D., Meyer H.M., and Simpson M.L.: Cu-Ni composition gradient for the catalytic synthesis of vertically aligned carbon nanofibers. Carbon 43, 1857, (2005).
18.Fowlkes J.D., Fitz-Gerald J.M., and Rack P.D.: Ultraviolet emitting (Y1– xGd x)2O3–δ thin films deposited by radio frequency magnetron sputtering: Combinatorial modeling, synthesis, and rapid characterization. Thin Solid Films 510, 68 (2006).
19.Favazza C., Kalyanaraman R., and Sureshkumar R.: Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing. J. Appl. Phys. 102, 104308 (2007).
20.Favazza C., Trice J., Krishna H., and Kalyanaraman R.: Effect of surface roughness on laser-driven instability dewetting of ultrathin Co films. Proc. SPIE 7039, 703907 (2008).
21.Seemann R., Herminghaus S., and Jacobs K.: Gaining control of pattern formation of dewetting liquid films. J. Phys. Condens. Matter 13, 4925 (2001).
22.González A.G., Diez J., Gratton R., and Gomba J.: Rupture of a fluid strip under partial wetting conditions. Europhys. Lett. 77, 44001 (2007).
23.McCallum M.S., Voorhees P.W., Miksis M.J., Davis S.H., and Wong H.: Capillary instabilities in solid thin films: Lines. J. Appl. Phys. 79, 7604 (1996).
24.Amekura H., Takeda Y., and Kishimoto N.: Criteria for surface plasmon resonance energy of metal nanoparticles in silica glass. Nucl. Instrum. Methods Phys. Res., Sect. B 222, 96 (2004).
25.Picciotto A., Pucker G., Torrisi L., Bellutti P., Caridi F., and Bagolini A.: Evidence of plasmon resonances of nickel particles deposited by pulsed laser ablation. Radiat. Eff. Defects Solids 163, 513 (2008).
26.Chan G.H., Zhao J., Hicks E.M., Schatz G.C., and Van Duyne R.P.: Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7, 7 (2007).
27.Liu Y.L., Liu Y.C., Mu R., Yang H., Shao C.L., Zhang J.Y., Lu Y.M., Shen D.Z., and Fan X.W.: The structural and optical properties of Cu2O films electrodeposited on different substrates. Semicond. Sci. Technol. 20, 44 (2005).
28.Ghodselahi T., Vesaghi M.A., and Shafiekhani A.: Study of surface plasmon resonance of Cu and Cu2O core-shell nanoparticles by Mie theory. J. Phys. D: Appl. Phys. 42, 015308 (2009).
29.Yang M. and Zhu J.J.: Spherical hollow assembly composed of Cu2O nanoparticles. J. Cryst. Growth 256, 134 (2003).
30.Zhang J., Liu H., Wang Z.A., and Ming N.: Preparation and optical properties of silica and Ag-Cu alloy core-shell composite colloids. J. Solid State Chem. 180, 1291 (2007).
31.Magruder R.H. III, and Wittig J.E.: Wavelength tenability of the surface plasmon resonance of nanosize metal colloids in glass. J. Non-Cryst. Solids 163, 162 (1993).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 14
Total number of PDF views: 58 *
Loading metrics...

Abstract views

Total abstract views: 340 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th October 2017. This data will be updated every 24 hours.