Skip to main content

Optimizing fatigue performance of nacre-mimetic PE/TiO2 nanolayered composites by tailoring thickness ratio

  • Yu-Jia Yang (a1), Bin Zhang (a1), Hong-Yuan Wan (a2) and Guang-Ping Zhang (a2)

Nacre-mimetic (PE/TiO2)4 nanolayered composites (NLCs) with the nanocrystalline TiO2 layer thickness less than 30 nm and different thickness ratios of inorganic/organic layers were successfully prepared by using layer-by-layer self-assembly and chemical bath deposition method. Mechanical properties, especially fatigue properties of the NLCs with different thickness ratios were evaluated. The elastic modulus, hardness and fracture toughness, strain amplitude to fatigue limits of the NLCs reached 27.78 ± 5.69 GPa, 1.33 ± 0.31 GPa, and 4.16 ± 0.20 MPa m1/2, respectively. Fatigue performance of the NLCs in the high and low cycle fatigue regimes was optimized by tailoring the thickness ratio of the TiO2/PE layers. The PE/TiO2 NLCs with the larger thickness ratio of ∼3 has the high fatigue limit (the critical strain amplitude of 0.0853%) in the high-cycle fatigue regime, while that with the smaller thickness ratio of ∼1 and ∼0.5 are of the good fatigue strength in the low-cycle fatigue regime. The basic mechanism for the enhanced fatigue performance is elucidated.

Corresponding author
a)Address all correspondence to these authors. e-mail:
Hide All
1.Li, X.D. and Nardi, P.: Micro/nanomechanical characterization of a natural nanocomposite material—The shell of Pectinidae. Nanotechnology 15, 211 (2004).
2.Currey, J.D.: Mechanical-properties of mother of pearl in tension. Proc. R. Soc., Ser. B 196, 443 (1977).
3.Espinosa, H.D., Rim, J.E., and Barthelat, F.: Merger of structure and material in nacre and bone—Perspectives on de novo biomimetic materials. Prog. Mater. Sci. 54, 1059 (2009).
4.Song, F., Soh, A.K., and Bai, Y.L.: Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3623 (2003).
5.Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., and Aksay, I.A.: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485 (2011).
6.Li, H., Yue, Y., Han, X., and Li, X.: Plastic deformation enabled energy dissipation in a bionanowire structured armor. Nano Lett. 14, 2578 (2014).
7.Huang, Z., Li, H., Pan, Z., Wei, Q., Chao, Y.J., and Li, X.: Uncovering high-strain rate protection mechanism in nacre. Sci. Rep. 1, 1 (2011).
8.Li, X.D., Chang, W.C., Chao, Y.J., Wang, R.Z., and Chang, M.: Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett. 4, 613 (2004).
9.Huang, Z. and Li, X.: Origin of flaw-tolerance in nacre. Sci. Rep. 3, 1 (2013).
10.Bonderer, L.J., Studart, A.R., and Gauckler, L.J.: Bioinspired design and assembly of platelet reinforced polymer films. Science 319, 1069 (2008).
11.Zhao, H., Yue, Y., Guo, L., Wu, J., Zhang, Y., Li, X., Mao, S., and Han, X.: Cloning Nacre’s 3D interlocking skeleton in engineering composites to achieve exceptional mechanical properties. Adv. Mater. 28, 5099 (2016).
12.Gao, H.L., Chen, S.M., Mao, L.B., Song, Z.Q., Yao, H.B., Colfen, H., Luo, X.S., Zhang, F., Pan, Z., Meng, Y.F., Ni, Y., and Yu, S.H.: Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 8, 1 (2017).
13.Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., Tomsia, A.P., and Ritchie, R.O.: Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 28, 50 (2016).
14.Tang, Z., Kotov, N.A., Magonov, S., and Ozturk, B.: Nanostructured artificial nacre. Nat. Mater. 2, 413 (2003).
15.Das, P., Thomas, H., Moeller, M., and Walther, A.: Large-scale, thick, self-assembled, nacre-mimetic brick-walls as fire barrier coatings on textiles. Sci. Rep. 7, 1 (2017).
16.Wang, J., Cheng, Q., Lin, L., and Jiang, L.: Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. ACS Nano 8, 2739 (2014).
17.Zhang, Y. and Li, X.: Bioinspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness. Nano Lett. 17, 6907 (2017).
18.Zhao, N., Yang, M., Zhao, Q., Gao, W., Xie, T., and Bai, H.: Superstretchable nacre-mimetic graphene/poly(vinyl alcohol) composite film based on interfacial architectural engineering. ACS Nano 11, 4777 (2017).
19.Cheng, Q., Li, M., Jiang, L., and Tang, Z.: Bioinspired layered composites based on flattened double-walled carbon nanotubes. Adv. Mater. 24, 1838 (2012).
20.Wan, S., Zhang, Q., Zhou, X., Li, D., Ji, B., Jiang, L., and Cheng, Q.: Fatigue resistant bioinspired composite from synergistic two-dimensional nanocomponents. ACS Nano 11, 7074 (2017).
21.Wan, S., Xu, F., Jiang, L., and Cheng, Q.: Superior fatigue resistant bioinspired graphene-based nanocomposite via synergistic interfacial interactions. Adv. Funct. Mater. 27, 1 (2017).
22.Decher, G.: Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 1232 (1997).
23.Burghard, Z., Zini, L., Srot, V., Bellina, P., van Aken, P.A., and Bill, J.: Toughening through nature-adapted nanoscale design. Nano Lett. 9, 4103 (2009).
24.De Guire, M.R., Niesen, T.P., Supothina, S., Wolff, J., Bill, J., Sukenik, C.N., Aldinger, F., Heuer, A.H., and Ruhle, M.: Synthesis of oxide and non-oxide inorganic materials at organic surfaces. Z. Metallkd. 89, 758 (1998).
25.Tan, H.F., Zhang, B., Yan, J.W., Sun, X.D., and Zhang, G.P.: Synthesis and toughening behavior of bio-inspired nanocrystalline TiO2/polyelectrolyte nanolayered composites. Mater. Res. Bull. 50, 128 (2014).
26.Zhang, B., Tan, H.F., Yan, J.W., Zhang, M.D., Sun, X.D., and Zhang, G.P.: Microstructures and mechanical performance of polyelectrolyte/nanocrystalline TiO2 nanolayered composites. Nanoscale Res. Lett. 8, 1 (2013).
27.Burghard, Z., Tucic, A., and Jeurgens, L.P.H.: Nanomechanical properties of bioinspired organic–inorganic composite films. Adv. Mater. 19, 970 (2007).
28.Yang, Y.J., Zhang, B., Tan, H.F., Luo, X.M., and Zhang, G.P.: Fatigue and fracture reliability of shell-mimetic PE/TiO2 nanolayered composites. Adv. Eng. Mater. 19, 1 (2017).
29.Gao, H.J., Ji, B.H., Jager, I.L., Arzt, E., and Fratzl, P.: Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. U.S.A. 100, 5597 (2003).
30.Hoffmann, R.C., Bartolome, J.C., Wildhack, S., Jeurgens, L.P.H., Bill, J., and Aldinger, F.: Relation between particle growth kinetics in solution and surface morphology of thin films: Implications on the deposition of titania on polyethylene terephthalate. Thin Solid Films 478, 164 (2005).
31.Ohmura, T., Matsuoka, S., Tanaka, K., and Yoshida, T.: Nanoindentation load-displacement behavior of pure face centered cubic metal thin films on a hard substrate. Thin Solid Films 385, 198 (2001).
32.Jian, S.R., Chen, G.J., and Lin, T.C.: Berkovich nanoindentation on AlN thin films. Nanoscale Res. Lett. 5, 935 (2010).
33.Xia, Z., Curtin, W.A., and Sheldon, B.W.: A new method to evaluate the fracture toughness of thin films. Acta Mater. 52, 3507 (2004).
34.Dai, C.Y., Zhu, X.F., and Zhang, G.P.: Tensile and fatigue properties of free-standing Cu foils. J. Mater. Sci. Technol. 25, 721 (2009).
35.Yamabi, S. and Imai, H.: Crystal phase control for titanium dioxide films by direct deposition in aqueous solutions. Chem. Mater. 14, 609 (2002).
36.Ji, B.H. and Gao, H.J.: Mechanical properties of nanostructure of biological materials. J. Mater. Sci. Technol. 52, 1963 (2004).
37.Wang, D., Volkert, C.A., and Kraft, O.: Effect of length scale on fatigue life and damage formation in thin Cu films. Mater. Sci. Eng., A 493, 267 (2008).
38.Gerberich, W.W., Michler, J., Mook, W.M., Ghisleni, R., Östlund, F., Stauffer, D.D., and Ballarini, R.: Scale effects for strength, ductility, and toughness in “brittle” materials. J. Mater. Res. 24, 898 (2009).
39.Suresh, S.: Fatigue of Materials, 2nd ed. (Cambridge University Press, Cambridge, 1998).
40.Tao, X., Liu, J., Koley, G., and Li, X.: B/SiOx nanonecklace reinforced nanocomposites by unique mechanical interlocking mechanism. Adv. Mater. 20, 4091 (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 66 *
Loading metrics...

* Views captured on Cambridge Core between 12th June 2018 - 22nd June 2018. This data will be updated every 24 hours.